		LESS	ON PI	LAN				
NAME OF FACULTY	Mr. Mohd. Mohsin							
DISCIPLINE	Electrical Engineering							
SEMESTER	3rd							
SUBJECT	Electrical Machines -							
LESSON PLAN DURATION	I 14 week							
(LECTURE/ PRACTICAL)		THEOR Y-3		PRACTICAL - 4				
WEEK		THEOR Y		PRACTICAL				
	LECTURE DAY	TOPIC	PRACT I CAL DAY	TOPI C				
1 st	1	Definition of motor and generator.	1	Measurement of the angular displacement of the rotor of a slip-ring induction motor on application of DC to stator of motor winding in sequence				
	2	Concept of torque.	2	and simultaneously to each phase of rotor winding				
	3	Torque development due to alignment of two fields, concept of torque angle.	3					
2nd	4	Electro-magnetically induced emf	4	Measurement of the angular displacement of the rotor of a slip-ring induction motor on application of DC to stator of motor winding in sequence				
	5	Elementary concept of an electrical machine	5	and simultaneously to each phase of rotor winding				
	6	Main constructional features of DC machines. Comparison of generator and motor,	6					
3rd	7	Function of the commutator for motoring action.	7	Speed control of dc shunt motor (i) Armature controlmethod(ii) Field control method				
	8	Function of the commutator for generation action	8					
	9	Factors determining induced emf ,Factors determining the electromagnetic torque	9					
$4_{ m th}$	10	Types of dc generation on the basis of excitation.	10	Speed control of dc shunt motor (i) Armature controlmethod(ii) Field control method				
	11	Significance of back e.m.f.voltage built up in a dc shunt generator,	11					
	12	the relation between back emf and Terminal voltage.	12					
5th	13	Assignment on Torque development due to alignment of two fields & Comparison of generator and motor	13	Study of dc series motor with starter (to operate the motor on no load for a moment)				
	14	Armature Reaction, Commutation methods to improve commutation	14					
	15	Performance of different types of DC motors characteristics of different types of DC motors	15]				

	-				
6 _{th}	26 Speed control of dc shunt motors		16	Study of dc series motor with starter (to operate the motor on no load for a moment)	
		17	Speed control of dc series motors	17	
		18	Revision /test	18	
7_{th}		19	Need of starter, 4-point starter dc shunt motor	19	Study of 3 point starter for starting D.C. shunt motor.
		20	Three point dc shunt motor starter, Applications of DC motors, Losses in a DC machine	20	
		21	Determination of losses by Swinburne's test	21	
8 _{th}	Co		(single phase) Introduction, l features of a transformer and ormer	22	Study of 3 point starter for starting D.C. shunt motor.
	23 W		ciple of a transformer,EMF	23	
-	24 Tr	ansformer o	on no-load	24	
9 _{th}	25 Ph	asor diagra	m of Transformer	25	To perform open circuit and short circuit test for determining: (i) equivalent circuit (ii) the regulation and (iii) efficiency of a transformer from the data obtained from
		26 Transformer – neglecting voltage drop in the windings, Transformer – Ampere turn balance			open circuit and short circuit test at full load
_	the	7 Transformer – neglecting voltage drop in the windings – Ampere turn balance – its phasor diagram			
10 _{th}		8 Mutual and leakage fluxes, leakage reactance		28	To perform open circuit and short circuit test for determining: (i) equivalent circuit (ii) the regulation and (iii) efficiency of a transformer from the data obtained from
	loa	9 Assignment on transformer, Transformer on load, voltage drops, its phasor diagram Equivalent circuit			open circuit and short circuit test at full load
	30 Re	evision/test		30	
11th		Relation between induced emf and terminal voltage		31	To find the efficiency and regulation of single phase transformer by actually loading it.
		gulation of a athematical	a transformer and its relation	32	
		osses in a tra cuit test.	unsformer, Open circuit and short	33	
12th	34 Calculation of efficiency, condition for maximum efficiency.		34	To find the efficiency and regulation of single phase transformer by actually loading it.	
		maintenance of Transformer, scheduled Maintenance		35]
		5 Auto transformer construction, Auto transformer saving of copper.		36]
13 _{th}	37 Au	ito transfori	ner working and applications	37	Checking the polarity of the windings of a three phase transformer and connecting the windings in various configurations.
		fferent type pe transform	s of transformers including dry her	38	
	ac	cessories of	of three phase transformers, transformers such as preather, Buchholz Relay, Tap	39	

		Changer (off load and on load) (Brief idea)		
14th	40	Types of three phase transformer i.e. delta-delta, delta-star, star-delta and star-star	40	Finding the voltage and current relationships of primary and secondary of a three phase transformer under balanced load in various configurations
	41	Conditions for parallel operation (only conditions are to be studied)	41	conditions such as Star-star Star delta Delta star
	42	Transformers three phase On load tap changer, power transformer distribution transformer	42	 Delta - Delta configuring conditions.

Name of the Faculty	:	Mohd. Mohsin
Discipline	:	Electrical Engineering
Semester	:	4 th Semester
Subject	:	Electric Vehicle
Lesson Plan Duration	:	14 Weeks

Week	Theory	1	Practical		
	Lectu re Day	Topic (including assignment / test)	Practical Day	Торіс	
1 st	1	Introduction to Electric Vehicles (EV) History and evolution of Electric Vehicle	1 st	Draw block diagram of Electric Vehicle and identify its various parts.	
2 nd	3,	Policies and regulations related to EV in India	2 nd	Develop schematic diagram of hybrid electric vehicle and its parts.	
	4	Needs and Importance of Electric Vehicle			
3 rd	5	Advantages and Disadvantages of Electric Vehicles	3 rd	Prepare a report on batteries used in EV and HEV.	
	6	Types of EVs- Battery Electric Vehicle (BEV)			
4 th	7	PHEV (Plug in Hybrid Electric Vehicle) and Hybrid Electric Vehicle (HEV)	4 th	Diagnose, repair and maintenance of batteries used in Electric Vehicle.	
	8	Mandatory safety precautions while handling Electric Vehicle			
5 th	9,10	Working principle and Control of motors used in Electric Vehicles- Brushless DC (BLDC) motor	5 th	Study of various types of braking system used in EV.	
6 th &7 th	11	Switched Reluctance Motor (SRM)	6 th	Demonstration of wiring layout of Electric Vehicles using model (if available) or watching videos	
	12,1 3	Permanent Magnet Synchronous Motor (PMSM).	7 th	Prepare test procedure for electrical equipment used in Electric vehicle.	
	14	Advantages and disadvantages of above motors			
8 th	15	Electric Vehicle Charger	8 th	List safety procedures and schedule	
	16	Main components of EV Charger, EV Charging Sockets		for handling HEVs and EVs.	
9 th	17	Charging of Electric Vehicle	9 th	Case study of Electric Vehicle available	
	18	Safety precautions for EV charging		in Indian market and study the technology used in it.	
10 th &11 th	19	Types of batteries used in EVs- dry batteries	10 th	Measurement of voltage of battery installed in Electric vehicle.	
	20,2 1	Construction and working of Lithium Ion batteries			

	22	Charging & discharging tests of Li-Ion batteries
12 th	23	Regenerative braking in EVs
	24	Battery management system
13 th	25	Battery cooling system
	26	Overview of Hybrid Electric Vehicles
14 th	27	Types of HEV (overview) like gasoline ICE
		& battery, diesel &battery, Battery &
		Fuel cell, battery capacitor, battery &
		flywheel etc
	28	Comparison with EV, advantages and
		disadvantages of HEV

Name of the Faculty	:	Mrs. Poonam Saini
Discipline	:	Electrical Engineering
Semester	:	3 th Semester
Subject	:	Analog and Digital Electronics
Lesson Plan Duration	:	13-14 Week

Week	Theory		Practical	Practical		
	Lecture Day	Topic (including assignment / test)	Practical Day	Торіс		
	1	Concept of insulators, conductors and semiconductors	1	To Plot V-I characteristics of a PN junction diode, To Plot V-I characteristics of a Zener diode, Observe the output of waveform:		
	2	Intrinsic and extrinsic semiconductor	2	Half-wave rectifier circuit using one diode, Full-wave rectifier circuit using two diodes		
	3	P and N type semiconductor and their conductivity	3	Observe the output of waveform of Bridge-rectifier circuit using four diodes.		
	4	Effect of temperature on conductivity of intrinsic semiconductor	4	Plotting of input and output characteristics and calculation of parameters of transistors in CE configuration., Plotting of input and output characteristics and calculation of parameters of transistors in CB configuration		
	5	PN junction diode, mechanism of current flow in PN junction	5	To study weighing machine using load cell		
	6	Forward and reverse biased PN junction, potential barrier	6	Plotting of V-I characteristics of a FET		
	7	Drift and diffusion currents, depletion layer	7	Basic logic operations of AND, OR, NOT gates		
	8	V-I characteristics of diodes	8	Verification of truth tables for NAND, NOR and Exclusive OR (EX-OR) and Exclusive NOR (EX-NOR) gates		
	9, 10	Diode as half-wave, full wave and bridge rectifiers, Peak Inverse Voltage, rectification efficiencies and ripple factor calculations	9	Realization of logic functions with the help of NAND or NOR gates.		

	11	Concept of filters,	10	To design a half adder using
				XOR and NAND gates and verification of its operations.
<u> </u>	12	Types of diodes, characteristics	11	Construction of a full adder
		and applications of Zener diodes		circuit using XOR and NAND
	13	Concept of a bipolar transistor,	12	gates and verify its operation Verification of truth table for
	15	PNP and NPN transistors, CB, CE,	12	IC flip-flops (At least one IC
		CC configurations of a transistor		each of D latch, D flip-flop, JK
				flip-flops)
	14, 15,	Transistor as an amplifier in CE	13	Verification of truth table for
	16	Configuration, Current		encoder and decoder ICs.
		amplification factors, Comparison		Verification of truth table for
	17, 18	of CB, CE and CC Configurations Construction, operation and		Mux and De-Mux
	17, 10	characteristics of FETs, FET as an		
		amplifier		
	19	Construction, operation and		
		characteristics of a MOSFET,		
		Comparison of JFET, MOSFET and		
	20	BJT Distinction between englished		
	20	Distinction between analog and digital signal. Decimal, Binary,		
		octal and hexadecimal number		
		system		
	21, 22,	Conversion from decimal and		
	23	hexadecimal to binary and vice-		
		versa, Binary addition and		
	24,25	subtraction		
	24,20	Sequential Circuits such as Half adder, Full adder		
	26	Mux, De-Mux, Encoder and		
		Decoder		
	27,28	Combinational Circuits like Latch,		
		Flip Flops, shift registers and		
	20.20	counters		
	29,30	A/D and D/A Converters and its Applications		
	<u> </u>			

Name of the Faculty	:	Mrs. Sharmila
Discipline	:	Electrical Engineering
Semester	:	1 st Semester
Subject	:	Fundamental of Information Technology

Lesson Plan Duration : 13-14 Week

Week	Theory		Practical		
	Lecture Day	Topic (including assignment / test)	Practical Day	Торіс	
	1	Brief history of development of computers, Definition of Computer, Block diagram of a Computer, Hardware, Software, Booting: Cold and Hot Booting,	1	Browser features, browsing, using various search engines, writing search queries .	
	2	Interaction between the CPU and Memory with Input/Output devices, Function of CPU and major functional parts of CPU.	2	Visit various e- governance/Digital India portals, understand their features, services offered.	
	3	Memory, Bit, Nibble, Byte, KB, MB, GB, TB, PB, Functions of memory, Use of storage devices in a Computer, List types of memory used in a Computer, Importance of cache memory, CPU speed and CPU word length	3	. Read Wikipedia pages on computer hardware components, look at those components in lab, identify them, recognize various ports/interfaces and related cables, etc.	
	4	Understanding browser, Introduction to WWW, efficient use of search engines, awareness about Digital India portals (state and national portals) and college portals.	4	Using Administrative Tools/Control Panel Settings of Operating Systems.	
	5	Advantages of Email, Various email service providers, Creation of email id, sending and receiving emails			

6	attaching documents with email and drive.	
	Effective use of Gmail, G-Drive, Google	
7	Calendar, Google Sites Google Sheets, Online mode of	
	communication using Google Meet & WebEx	
8	Introduction to Programming, Steps involved	
	in problem solving, Definition of Algorithm,	
	Definition of Flowchart	
9	Steps involved in algorithm development,	
	differentiate algorithm and flowchart, symbols	
	used in flowcharts	
10	algorithms for simple problems, flowcharts for	
11	simple problems	
11	Practice logic building using	
	flowchart/algorithms	
12	Office Tools like	
12	LibreOffice/OpenOffice/MSOffice.	
	1	
13	OpenOffice Writer – Typesetting Text and	
	Basic Formatting, Inserting Images,	
	Hyperlinks, Bookmarks, Tables and Table	
	Properties in Writer Introducing	
1.4	LibreOffice/OpenOffice Calc	
14	Working with Cells, Sheets, data, tables, using	
	formulae and functions, using charts and graphics.	
15	OpenOffice Impress – Creating and Viewing	
10	Presentations	
16	Inserting Pictures and Tables, Slide Master	
	and Slide Design, Custom Animation.	
17	Introduction to Digital Marketing – Why	
	Digital Marketing, Characteristics of Digital	
10	Marketing, Tools for Digital Marketing,	
18	Effective use of Social Media like LinkedIn,	
	Google+, Facebook, Twitter, etc.: Features of Social media	
19	Advantages and Disadvantages of Social	
	Media. Revision of important topics	
	income network of important topics	
20	Class test	

IATERIALS

Lesson Plan Duration : 13-14 Week

Week	Theory	Practical		
	Lecture	Topic (including assignment / test)	Practical	Topic
	Day		Day	
	1	Classification of materials into conducting, Semi conducting		
	2	Insulating materials . Atomic theory, Energy band theory.		
		Classifications of materials on the basis of atomic structure and		
		energy bands. Characteristics of materials.		
	3	Types of conducting material such as low resistivity and high		
		resistivity materials.		
	4,5	Properties and applications of different low resistivity materials		
		such as silver, Gold, copper (hard drawn, annealed copper),		
		aluminum, steel, ACSR and its alloys like copper alloy (brass,		
		bronze) etc.		
	6,7	Properties and applications of different high resistivity material		
		such as carbon, tungsten, platinum, mercury, lead, and its alloys		
		like Constantan or eureka, Brass phosphor bronze, nichrome,		
		manganin, tin-lead alloy etc.		
	8	Semi-conductors Materials and their Applications,		
	9	Commonly used semiconducting material Germanium and silicon		
		and their properties. Types of Semiconductor etc.		
	10	Characteristics of good Insulating material, Electrical, thermal,		
		chemical, visual, mechanical		
	11	Physical properties of Insulating materials. Types of Insulating		
		materials. classification of insulating material on the basis of		
		temperature		
	12	Gaseous Insulating Materials: Properties and applications of air,		
		nitrogen and sulphur hexafluoride (SF-6) gases		
	13	Liquid Insulating Materials: Properties and applications of Mineral		
		and Insulating oil for transformers (mineral oil), switchgears etc,		
		synthetic insulating liquid (Pyranol).		

	14	Solid Insulating Materials: Properties, types and applications of	
		Plastics such as polyvinyl chloride (PVC), Polyethylene,	
		polystyrene, epoxy resin, Bakelite, Melamines, silicon resins etc	
	15	Natural Insulating materials, properties and their applications:	
		Mica, asbestos, ceramic materials (porcelain and steatite)	
	16	Glass, Cotton, Silk, Jute, Paper (dry and impregnated) Rubber,	
		Bitumen	
	17	Teflon, Silicon Grease, Insulating varnishes for coating and	
		impregnation, Enamels for winding wires, wood etc	
	18	Characteristics and types of magnetic material, Properties of soft	
		magnet material like Iron silicon alloy	
	19,20	Nickel iron alloy, Mu metal, soft ferrites, grain orientation, Cold	
		rolled grain oriented silicon steels (C.R.G.O) etc. and their	
		applications	
	21,22	Properties of hard magnet material like Tungsten steel alloy,	
		chromium steel, cobalt steel, Hard ferrites etc. and their	
		applications.	
	23	Cobalt steel, Hard ferrites etc. and their applications.	
	24	Thermocouples, Bimetals, soldering, fuse, materials and their	
		applications	
	25	Material used in fabrications of electrical machines such as motors	
	26	Generators, transformers etc	
<u> </u>	27	Class Test	
	28,29	Problems, Doubts & their solution	
	30	Revision of important topics	

Name of Faculty:	Parul Trake
Discipline:	Electrical Engineering
Semester:	3rd Semester
Subject:	Electrical Engineering Drawing
Lesson Plan Duration:	13-14 Week

Practical	Торіс		
Day			
1	Unit 1 : Electrical Symbols used in Electrical installation		
2	Drawing sheet1: Design and Drawing of panels/Distribution board using MCB,		
	ELCB main switches and change over switches		
3	Drawing sheet2: Design and Drawing of panels/Distribution board using MCB,		
	ELCB main switches and change over switches		
4	Unit 2 : DOL starting of 3-phase induction motor		
5	3-phase induction motor getting supply from selected feeder		
6	Forwarding/reversing of a 3-phase induction motor		
7	Two speed control of 3-phase induction motor		
8	Sequential operating of two motors using time delay relay		
9	Manually generated star delta starter for 3-phase induction motor		
10	Automatic star delta starter for 3-phase Induction Motor		
11	Draw the wiring diagram of battery and inverter connected to residential load.		
12	Draw the wiring diagram of standalone solar light system with battery for a		
	residential house		
13	Draw the wiring diagram of solar water heating system.		
14	Key diagram of 11kV, 33kV		
15	Key diagram of 66kV sub-stations		
16	Key diagram of 132 kV sub-stations		
17	Draw pipe Earthling.		
18	Draw plate Earthling.		
19	Bus bar post.		
20	Kit Kat Fuse.		
21	Pin type insulator (Pin Type 11kV)		
22	Pin type insulator (Pin Type 66kV)		
23	Rotor of a squirrel cage induction motor		
24	Stator of 3 phase Induction motor (Sectional View)		
25	Revision		
26	Revision		
27	Revision		
28	Revision		

Name of Faculty	:-	Parul Trake
Discipline	:-	Electrical Engineering
Semester	:-	1st Semester
Subject	:-	Principle of Electrical Engineering
Lesson Plan Duration	:-	13-14 Week

	Theory		Practical
Lecture Day	Торіс	Practical Day	Торіс
1 2	Introduction, Nature of Electricity, Electric current, Electrical Energy, Electrical power and their unit.	1	PRACTICAL-1 Familiarization of basic components/equipment like ammeter, voltmeter, watt meter, resistance, capacitor, inductor, energy meter, power factor meter, CRO, multi- meter etc and their operation, uses .
3	Resistance, conductivity and resistivity, resistance properties.		PRACTICAL-1 PRACTICAL-1
4	Rating and wattages of Electrical appliances, heating effect of Electrical current. Introduction to Capacitors, capacitance, Variable capacitor, Factors affecting capacitance of a capacitor and its various connections.	2	Familiarization of basic components/equipment like ammeter, voltmeter, watt meter, resistance, capacitor, inductor, energy meter, power factor meter, CRO, multi- meter etc and their operation, uses .
5	Factors affecting capacitance of a capacitor and its various connections.	3	PRACTICAL-2 Determine the value of resistance
6	Energy stored in capacitor, Charging and discharging of a capacitor.	3	using colour coding method.
7	Charging and discharging of a capacitor.		PRACTICAL-3 Observation of change in resistance
8	REVISION UNIT-1	4	of a bulb in hot and cold conditions, using voltmeter and ammeter

9	Unit-2 DC Machines Ohm's law with practical implementation.	5	PRACTICAL-4 To charge and discharge a capacitor
10	Definition of DC circuit, types of DC circuits	J	and to show the graph on C.R.O.
11	Concept of voltage source & current source, connections and their conversions.	6	PRACTICAL-5 Verification of laws of capacitors in series and parallel.
12	Concept of voltage source & current source, connections and their conversions.		
13	Wheatstone Bridge.		PRACTICAL-6
14	Kirchhoff's Laws-KVL and KCL.	7	To verify ohm's law by drawing a graph between voltage and current
15	Star – Delta connections and their conversion.		PRACTICAL-7 Verification of Kirchhoff's Current Law in
16	UNIT III Electrostatics & Magneto statics	8	a de circuit.
	Concepts of Electrostatics, Coulomb's law.		
17	Concept of magnetism, Magnetic field, Magnetic lines of force	9	PRACTICAL-7 Verification of Kirchhoff's Current Law
18	Definition of Electromagnetism,	,	in a dc circuit.
19	Magnetic effect of electric current, direction of magnetic field and current.	10	PRACTICAL-8 Verification of Kirchhoff's Voltage Laws
20	Current carrying conductors in a magnetic field and methods to find its direction, applications		in a dc circuit.
21	Analogy between electric and magnetic circuit. UNIT IV Electro-Magnetic Induction	11	PRACTICAL-9 Measurement of current and voltage in series resistive circuit. Measurement of current and voltage in parallel resistive
22	Determination of Ampere Turns, Series & parallel magnetic circuits,		circuit.
23	Magnetic curve (B-H curve) - cause of Hysteresis, Hysteresis loss.	12	PRACTICAL-9 Measurement of current and voltage in series resistive circuit. Measurement of current and voltage in parallel resistive circuit.

24	Faraday's laws of electro-magnetic		PRACTICAL-10
24	induction.		
		13	To find the ratio of inductance of a coil
		15	having air-core and iron-core respectively
			and to observe the effect of introduction of a
	EME indexed in a sea bester		magnetic core on coil inductance.
25	E.M.F induced in a conductor. Energy stored in an Inductor,		PRACTICAL-10
-	Energy stored in an inductor,		To find the ratio of inductance of a coil
26	Eddy currents, Eddy current losses.	14	having air-core and iron-core
20			respectively and to observe the effect of
			introduction of a magnetic core on coil
			inductance.
27	UNIT V Batteries		PRACTICAL-11
27	Electrolysis,		
		15	Verification of Faraday's law of
28	Faradays law of electrolysis, Concept of	15	electromagnetic induction
20	Cells, Concept of Batteries		
	Solution		
	Charging methods of storage battery		PRACTICAL-12
29	and charging indications.		
	Characteristics of battery,	16	To obtain BH curve of a magnetic material
		10	
30			
00	Introduction to maintenance free		
	batteries.		
	Disposal of batteries		PRACTICAL-13
31	Disposal of batteries		TRACTICAL-15
			Demonstration of parts of a battery and find
32	Revision of Unit 1		the specific gravity of battery,
52		17	Demonstration of charging and discharging
			of Battery and measure the terminal voltage
			During charging and discharging condition.
	Revision of Unit 2		PRACTICAL-13
33,34			
		10	Demonstration of parts of a battery and find
35,36	Revision of Unit 3,4	18	the specific gravity of battery,
			Demonstration of charging and discharging
			of Battery and measure the terminal voltage
			During charging and discharging condition.

Name of the Faculty	:	Ms. Poonam Saini
Discipline	:	Electrical Engineering
Semester	:	5 th Semester
Subject	:	Solar Panel Installation and Maintenance
Lesson Plan Duration	:	13-15 Week as per academic calendar

Week	Theory		Practical			
	Lecture Day	Topic (including assignment / test)	Practical Week	Торіс		
	1	Photo voltaic effect				
	2	Basic of PV system				
	3	PV Cell, PV panel, PV module				
	4	PV Arrays, Photovoltaic I-V Characteristics Curves, conversion efficiency				
	5	Selection of Site: Site assessment tools				
	6	Site Location, Climate Condition				
	7	Solar Irradiance				
	8	Solar Insolation, Sun Angle and PV Orientation, Shading analysis				
	9	Tilt angle and its significance in solar panel orientation				
	10	PV Module: Series and Parallel connection of PV				
	11	Charger Controller: Function, type of charge controller				
	12	Inverter: Function, power ratings				
	13	Storage Battery: Battery parameters, battery bank				
	14	Types of batteries used in solar system				
	15	PV Mounting Structure: Roof mounted and ground mounted Structure				
	16	Balance of Systems: Disconnecting switches, wires and cables, combiner boxes, net meter, protection devices, earthing and grounding, Solar tracking systems etc.				
	17	Installation Tool: Hand tool ,wire strippers, crimping tools				
	18	Nuts, and washers, Leveling tools, ground anchors, multimeter				

19	Clamp on meter, non-contact	
	thermometer, angle finder etc	
20	Types of Solar PV System:	
	Standalone PV system, On Grid	
	system, Off Grid system	
21	Hybrid PV system, Comparison of	
	Different types of PV system	
22	Design Methodology for SPV	
	system: Calculation of load, Size of	
	solar panel	
23	Battery sizing, Selection of inverter,	
	Size of charge controller, Cable	
	sizing etc	
24	Connection of PV system	
	components	
25	Operating Hazardous Tools and	
	Equipment: Personal protective	
	equipment (PPE), Fall protection	
	equipment/tools, Fire protection	
	equipment	
26	Safety of PV system: PV module	
	safety, Electrical Safety, Battery	
	safety	
27	Marking and Labeling of PV	
	components	
28	Maintenance of Solar PV system	
29	Maintenance of Battery	
30	Installation and Troubleshooting of	
	Solar PV system	

_

Name of the Faculty	:	Mr. Surender Malik
Discipline	:	Electrical Engineering
Semester	:	5 th Semester
Subject	:	ELECTRICAL POWER -I

Lesson Plan Duration : 13-14 Week

Г

We	Theory		Practical	
ek	Lectur e Day	Topic (including assignment / test)	Practical Day	Top ic
	1,2	Main resources of energy, Conventional and non-conventional	1.To measure earth resistance with the help of earth resistance tester.	
	3,4	Different types of power stations, thermal, hydro, gas	2. To study different types of line insulators, line support.	
	5	Diesel and nuclear power stations	3.Visit a power generation plant to study its major parts, working and prepare detail report.	
	6,7	Flow diagrams and brief details of their operation, Comparison of the generating stations on the basis of running cost, site, starting, maintenance	4. Visit a 400kV/220kV/132kV transmission line and make list of all components viz line supports, conductors, insulators and other accessories and prepare detail report.	
	8,9	Importance of non-conventional sources of energy in the present scenario, Brief details of solar energy, bio-energy, wind energy	5.Visit to a 66kV/33kV/11kV/415V/230 V distribution line make list of all components viz line	
	10	Fixed and running cost, Load estimation, load curves, demand factor	6.To determine experimentally flash over voltage of transformer oil and hence determine the dielectric strength	

11	Load factor, diversity factor, power factor and their effect on cost of generation,	7.To measure the rating of capacitor bank installed in
	simple problems there on	a sub-station for improving power factor
12	Base load and peak load power stations, inter-connection of power stations and its advantages, concept of regional and national grid	8.Study of Indian Electricity rules as per BIS standard related to clearance of overhead transmission and distribution lines
13	Layout of transmission system, selection of voltage for H.T and L.T lines, advantages of high voltage for Transmission of power in both AC and DC	9.Draw a layout diagram of 11kV/400V substation installed in the campus and make list of all accessories
14	Comparison of different systems: AC versus DC for power transmission	10.To find fault in underground cables by Murray Loop Test/ Varley Loop Test.
15	Conductor material and sizes from standard tables	11.Study of data related to conductors of different sizes/types for overhead lines as per IS 398.
16	Types of supports, types of insulators	12.Visit to a distribution substation to study layout of major components and types of Feeders, Distributors and Service Mains and prepare detailed report.
17	Types of conductors, Selection of insulators, conductors, earth wire and their accessories	
18,19,	Transposition of conductors and string efficiency of suspension type insulators, Bundle Conductors, Mechanical features of line: Importance of sag, calculation of sag	
20	Effects of wind and ice related problems; Indian electricity rules pertaining to clearance	

21	Electrical features of line: Calculation of	
	resistance inductance and capacitance	
	without derivation in a.c. transmission line,	
	voltage regulation, and concept of corona.	
22	Effects of corona and remedial measures,	
	Transmission Losses, Lay out of HT and LT	
	distribution system	
23	Constructional feature of distribution lines	
20	and their erection, LT feeders and service	
	mains; Simple problems on AC radial	
	distribution system, determination of size of	
	conductor	
24	Preparation of estimates of HT and LT lines	
	(OH and Cables).	
25	Constructional features of LT (400 V), HT (II kV)	
	underground cables, advantages and	
	disadvantages of underground system with respect to overhead system	
26	Calculation of losses in distribution system ,	
20	Faults in underground cables-determine	
	fault location by Murray Loop Test, Faults	
	in underground cables-determine fault	
	location by Murray Loop Test	
27	Varley Loop Test	
28		
20	Varley Loop Test, Brief idea about	
	substations; out door grid sub-station	
	220/132 KV, 66/33 KV out door	
	substation	
29	Pole mounted substations and indoor	
	substation, layout of 33/11 and kV/400V	
	distribution substation and various	
	auxiliaries and equipment associated	
	with it	
30	Concept of power factor Reasons and	
	disadvantages of low power factor	
31	Methods for improvement of power factor	
	using capacitor banks, VAR Static	
	Compensator (SVC)	
32	Revision of Topics already covered	
32		