Name of the Faculty	:	Ms. SHARMILA
Discipline	:	Electrical Engineering
Semester	:	2nd Semester
Subject	:	NON-CONVENTIONAL ENERGY SOURCES
Lesson Plan Duration	:	14-15 Week

Week	Theory		Practical	
	Lecture	Topic (including assignment / test)	Practical	Торіс
	Day		Day	
	1	Classification of Energy-primary and	1	Visit the website of Ministry of
		secondary energy, Commercial and		New and Renewable Energy
		non- commercial energy, Importance		Sources and prepare the
		of non conventional energy sources,		Datasheet of Potential, Present
		present scenario, future prospectus,		and Future Scenario of
		energy scenario in India		Renewable energy sources in
				India.
	2	Sector-wise energy consumption,	2	. Familiarization with the
		Principle of conversion of solar		different components used in
		radiation into heat, Photo-voltaic cell,		solar PV plant (standalone and
		electricity, generation		gria
				connected system), solar water
				neating system, solar cooker,
	2 1 5	Die mass conversion technologies	2	Coloulate power flow of a stand
	3, 4, 5	Bio-mass conversion technologies-	3	alone PV system with DC load
		wet and dry processes., Methods for		AC load and battery
		obtaining energy from biomass.,		Ao load and battery.
		Power generation by using gasifiers		
	6, 7	Wind energy conversion, Windmills,	4	To demonstrate "I-V
		Electricity generation from wind-		Characteristics and Efficiency of
		types of wind mills, Local control,		1kvvp Solar PV System" with
		energy storage, Geo-thermal sources		varying radiation and
	0 0		5	Accomple the components of
	0, 9	Ocean thermal electric conversion,	Э	Assemble the components of
		Open and closed cycles, Hybrid		sudv the system
		cycles, Prime movers for geo-thermal		Sludy the System
		energy conversion, Steam Generation,		

10, 11,	Electricity generation, Magneto	6	Assemble the components of
12	Hydro Dynamic (MHD), Power		solar water heating system
	Generation		system & study the system.
13, 14	Design and operating principles of a	7	Identify Troubleshoot solar PV
	fuel cell		panel, inverter and solar smart
			metering system.
15	Conversion efficiency	8	Identify the specified
			components of a 1 KW Small
			Wind Turbine (SWT) system and
			study them.
16	Work output and e.m.f of fuel cells,	9	Estimation of wind speed using
			anemometer.
17	Applications	10	Study of charging and
			discharging behavior of a
			capacitor.
18	Hydro Energy – Mini & Micro	11	Study of charging characteristics
	hydro plants		of a Ni-Cd battery using solar
			photovoltaic panel.
19	Need of energy storage, Different	12	Identify the prime mover
	modes of energy storage, Flywheel		/turbines used in different
	storage, Super capacitor. Comparison		renewable energy sources for
	and application.		power generation and study
 			them.
20, 21	Superconducting Magnet Energy	13	Study the Performance of fuel
	Storage (SMES) systems, Capacitor,		cell.
	battery,		
22	Super capacitor. Comparison and	14	Identify the routine maintenance
	application		parts of the micro hydro power
			plant after watching a
			video.
23, 24	Revision of important topics		

Name of the Faculty	:	Ms. Parul Trake
Discipline	:	Electrical Engineering
Semester	:	2nd Semester
Subject	:	Electrical Network
Lesson Plan Duration	:	14-15 Week

Week	Theory		Practical	
	Lecture	Topic (including assignment / test)	Practical	Торіс
	Day		Day	
	1	Mesh analysis	1	Use voltmeter, ammeter to
				determine current through the
		Nodal analysis using voltage and		given branch of a electric
		current sources		network by applying mesh
				analysis.
	2	Superposition theorem	2	Use voltmeter, ammeter to
				determine current through the
		Thevenin theorem		given branch of a electric
				network by applying node
	0.1		0	analysis.
	3, 4	Norton theorem	3	Theorem
		Maximum power transfer theorem		Merification of Theyenin's
				theorem
	567	Active and passive network	Δ	Verification of Norton's
	0,0,7	Linear and Non Linear network	т	Theorems
				Verification of Maximum Power
				transfer Theorem.
	8, 9, 10	Generation of alternating Voltage and	5	Measure input current, power,
		current. Difference between ac and dc.		power factor of R-L series circuit
		Equation of		and draw the power
		alternating quantity.		triangle.
	11,12,	AC Terminology: waveform, cycle,	6	Measure input current, power,
	13	frequency, time period, amplitude,		power factor of R-C series circuit
		instantaneous		and draw the power
		value, alternation, and their important		triangle.
		relations (time period and frequency,		
		angular		
		velocity and frequency etc.)		

14, 15	Values of alternating voltage and current: Instantaneous value, peak value average value, r.m.s. value, form factor and peak factor	7	Measure input current, power, power factor of R-L-C series circuit and draw the power triangle.
16	Vector representation of alternating quantities.	8	Use variable frequency supply to create resonance in given series R-L-C circuit or by using variable inductor or variable capacitor.
17, 18	Concept of phase, phase difference and phasors	9	Estimation of wind speed using anemometer.
19, 20	Representation of electrical quantities through phasors Addition of two alternating quantities: parallelogram method, component method	10	To determine current, p.f., active, reactive and apparent power in R-C parallel A.C. circuit.
21, 22	A.C circuit containing pure Resistance, Inductance, Capacitance with the concept of power consumed, phase Angle, inductive and capacitive reactance etc.	11	To determine current, p.f., active, reactive and apparent power for given R-L-C parallel circuit with series connection of resistor and inductor in parallel with capacitor.
23, 24	AC series circuit: R-L, R-C, R-L-C along with the concept of phasor diagram, phase angle, Impedance, impedance triangle, power, power triangle etc.	12	Use variable frequency supply create resonance in given parallel R-L-C circuit or by using variable inductor or capacitor.
25, 26	Concept of True power, apparent power and reactive power, Power factor and its significance, disadvantages of low power factor, cause of low power factor, improvement of power factor.	13	Verify the relationship between phase and line values of current and voltages and power in balanced and unbalanced star connected load.
27, 28, 29	Active and reactive components of current	14	Verify the relationship between phase and line values of current and voltages and power

		in balanced and unbalanced
	Resonance in RLC series circuit,	delta connected load.
	Quality (Q) factor	
30	Concept of AC parallel circuit	
31, 32	Methods of solving parallel AC circuit: vector method, admittance	
	J-method	
33	Parallel Resonance, Q-factor	
34	Comparison of series and parallel resonance., Introduction to transient and Harmonics in A.C. circuits	
35, 36	Principle of generation of 3 –ø alternating emf., Advantages of Polyphase circuit over single phase circuit, Phase Sequence.	
37, 38	Types of three phase connections-Star connection and delta connection., Concept of balanced and unbalanced load.	
39, 40	Relation between phase and line quantities of star and delta connection	

Name of the Faculty	:	DR. MONIKA AGGARWAL
Discipline	:	Electrical Engineering
Semester	:	4 th Semester
Subject	:	UTILIZATION OF ELECTRICAL ENERGY
Lesson Plan Duration	:	12-15 Week

Week	Theory		Practical		
	Lecture	Topic (including assignment / test)	Practical	Торіс	
	Day		Day		
	1	Introduction, terms used in			
		illumination, laws of illumination			
	2	Indoor and outdoor illumination			
		levels			
	3,4	Discharge lamps			
	5,6	MV and SV lamps			
	7,8	General ideas about time switches,			
		street lighting, flood lighting and			
	-	decorative lighting			
	9	Advantages and methods of electric heating			
	10,11	Resistance heating			
	12	Induction heating			
	13	Dielectric heating			
	14	Electric welding			
	15,16,	Resistance and arc welding			
	17				
	18	Electric welding equipment,			
		comparison between A.C. and D.C,			
		Welding.			
	19	Need of electro-deposition			
	20	Laws of electrolysis			
	21,22,	Process of electro-deposition -			
	23	clearing, operation, deposition of			
		metals, polishing and buffing			
	24	Principle of galvanizing and its			
		applications			
	25,26	Principles of anodizing and its			
	07	applications			
	27	Electroplating of non-conducting			
	20.20	Materials			
	20,29	Electrical Circuits used in Pofrigoration			
	20.21	Air Conditioning and Water Coolers			
	30,31,				
	33	Electric Drive and its part			
	34	Advantages of electric drives Types			
	54	Auvaniages of electric unives, Types			

	of electric Drives	
35	Characteristics of different	
	mechanical loads	
36	Types of motors used in used in	
	Industrial Drives,	
37,38	Factors affecting selection of motors,	
	Applications of Electric Drive	
39	Introduction to Energy efficient drives	
40	Advantages of electric traction,	
	Concept of diesel electric Traction	
	system	
41	Systems of Track Electrification (DC	
	& AC system)	
42	Types of services – urban, sub-urban,	
	and main line and their speed-time	
	curves.	
43	Electrical block diagram and	
	accessories of an electric locomotive	
44	Different accessories for track	
	electrification such as overhead	
	centenary wire, conductor rail	
	system, current collector / pentagraph	
	etc.	
45	Power supply arrangements and	
	types of motors used for electric	
40	traction.	
46	Starting and braking of electric	
47	locomotives	
47	Introduction to EMU and metro	
	raiiways	

Name of the Faculty	:	DR. POONAM SAINI
Discipline	:	Electrical Engineering
Semester	:	4 th Semester
Subject	:	PLC & MICROCONTROLLERS
Lesson Plan Duration	:	12-15 Week

Week	Theory		Practical		
	Lecture	Topic (including assignment / test)	Practical	Торіс	
	Day		Day		
	1	Introduction, Definition and advantage	1	Introduction to PLC building blocks	
				and Ladder Programming.	
	2	Building blocks of PLC	2	Installation and programming using	
				OpenPLC.	
	3	CPU, Memory organization	3	Logic operations in PLC using ladder	
				language e.g. AND, OR, NOT etc.	
	4	Input- output modules (discrete and	4	Timers and Counters instructions in	
		analog)		PLC using ladder language.	
	5	Specialty I/O Modules	5	Sequence control system e.g. in lifting	
				a device for packaging and counting.	
	6	Power supply; I/O module selection	6	Traffic Lights System	
	7.8	Interfacing different I/O devices with	7	Doorbell Operation	
	7,0	appropriate I/O modules	'	Doorben Operation	
	9	PLC programming Instructions: Relay	8	Home Automation	
		type instructions			
	10	Timer instructions: On delay, off	9	Sorting of Objects	
		delay, retentive			
	11	Counter instructions: Up, Down, High	10	Demonstration and comparison of	
		speed		various 8051/8052 microcontrollers.	
	12	Logical instructions	11	Introduction to 8051 programming	
				using C.	
	13	Comparison Instructions	12	Testing of GPIO on Micro controller	
				board using C.	
	14	Data handling Instructions	13	Interfacing of 7 segment LED with	
				8051 using C.	
	15	Arithmetic instructions	14	Interfacing of 4x3/4x4 Keypad with	
				8051 using C.	
	16	Simple Programming examples	15	Car Parking with Counter	
		using ladder logic: Language based			
	17	Timer counter	16	Temperature controlled Fan	
	18,19.	comparison, arithmetic and data	17	RTC based digital clock	
	20	handling instructions			
	21	PLC Based Applications: Motor	18, <u>19,</u>	Agriculture Automation using	

	sequence control, Motor in forward	20	Humidity, Soil Moisture and
	and reverse direction		Temperature sensors
22	Star-Delta		
23	DOL Starters Traffic light control		
24	Elevator control, Conveyor system		
25	Stepper motor control, packaging etc.		
26,27	Stepper motor control, packaging etc.		
28	Block diagram of 8051		
29	Function of each block, Pin diagram,		
00	function of each pin		
30	Concept of Internal memory and External memory (RAM and ROM)		
31	Internal RAM structure, Reset and		
	clock circuit		
32,33	Various registers and SFRs of 8051.		
34	Instruction set		
35	Addressing modes		
36	Timer operation		
37	Serial Port operation		
38	Interrupts: Data Transfer operations		
39	Input/output operations.		
40	Design and Interface: keypad		
	interface, 7- segment interface		
41	LCD		
42	Stepper motor		
 43	Applications		

Name of the Faculty	:	Mohd Mohsin
Discipline	:	Electrical Engineering
Semester	:	4 th Semester
Subject	:	Estimating and Costing
Lesson Plan Duration	:	14-17 Week

Week	Theory		Practical		
	Lecture	Topic (including assignment / test)	Practical	Торіс	
	Day		Day		
	1	Purpose of estimating and costing			
	2	Performa for making estimates,			
		preparation of materials schedule,			
	3,4	Costing, price list, preparation of			
		tender document (with 2-3 exercises),			
	5,6	Net price list, market survey,			
		overhead charges, labor charges			
	7,8	Electrical point method and fixed			
		percentage method,			
	9	Contingency, profit.			
	10,11	Types of tenders, tender notice,			
		preparation of tender documents,			
	12,13	Method of opening tender, Quotation			
		format, comparison between tender			
		and quotation			
	114,15	Comparative statement, format			
		comparative statement, Earnest			
		money deposit (EMD)			
	16	Purchase system, order supply,			
		payment of bills.			
	17	Cleat, batten, casing capping and			
		conduit wiring,			
	18	Comparison of different wiring			
		systems,			
	19	Selection and design of wiring			
		schemes for particular situation			
		(domestic and Industrial).			
	20	Selection accessories of wire and			
		cables, wiring			
	21	Use of protective devices i.e. Mcb,			
		Elcb etc.			
	22	Use of wire-gauge and tables (to be			
		prepared/arranged)			
	23,24	Domestic installations; description of			
		various tests to test the wiring			

		installation before commissioning,	
	25	Standard practice as per IS and IE	
		rules.	
	26	Planning of circuits, sub-circuits and	
		position of different accessories,	
	27,28	Electrical layout, preparing estimates	
		including cost as per schedule rate	
		market rate	
	29.30	For single story and multistory	
	20,00	building having similar electrical load	
	31	Relevant IE rules and IS standard	
	-	practices.	
	32,33	Planning, designing and estimation of	
		installation for single phase motors of	
		different	
	34	Electrical circuit diagram, starters,	
	36,37	Preparation of list of materials,	
		estimating and costing exercises on workshop with singe phase	
	38	3-phase motor load and the light	
	50	load (3- phase supply system)	
	39 40	Design electrical installation scheme	
	00,10	of factory/ small industrial unit	
		preparation of material scheduled and	
		detailed estimation	
	41	Classification of outdoor Installation	
		streetlight / public lighting installation	
	42	Street light pole structure, selection of	
		equipment's, source used in street	
		light installation	
	43	Cables recommended types and sizes	
		of cable	
	44	Control of street light installation	
	45	Design, estimation and costing of	
		streetlight, preparation of tenders	
	46,47	Transmission and distribution lines	
		(overhead and underground) planning	
		and designing of lines with different	
		Fixtures, earthling etc. based on unit	
	40	cost calculation.	
	48	Service line connection estimate for	
		domestic and industrial load	
		(overnead and underground	
	10 50	Service line connection estimate for	
	49,00	domestic and industrial load (overhead	
		and underground connection) from	
		nole to energy meter	
	51	Types of substation Substation	
1		i pos or substantin, substantin	

	scheme and components	
51	Estimate of 11/0.4kV pole mounted	
	substation up to 200k v A fatting	
52	Earthling of substations	

Name of the Faculty	:	Mohd. Mohsin
Discipline	:	Electrical Engineering
Semester	:	4 th Semester
Subject	:	Electrical Machine-II
Lesson Plan Duration	:	12-15 Week

Week	Theory		Practical		
	Lecture	Topic (including assignment / test)	Practical	Торіс	
	Day		Day		
	1	Introduction,			
	2,3	Construction of 3-Phase Synchronous			
		Machine			
	4	Excitation in Synchronous Machines			
	6	E.M.F. Equation of Alternator			
	7	Generation of E.M.F.			
	8	Armature Winding			
	9,10	Voltage Generate inDistributed			
		Short Pitch Winding			
	11	Armature Reaction and its effects			
	12	Equivalent Circuit and Phasor			
		Diagram of Synchronous Generator			
	13	Voltage Regulation			
	14	Parallel operation			
	15	Procedure of Synchronizing			
	16	Synchronous Power and Torque			
	17	Effect of change in excitation and			
		input power			
	18,19	Synchronous Motor: Working Principle & Equivalent Circuit			
	20	Loading in Synchronous Motor			
	21,22	V-Curve and Inverted V- Curve			
		In Synchronous Motor			
	23	Synchronous Condenser			
	24,25	Starting of Synchronous Motor,			
		Hunting in Synchronous Motor			
	26	Applications of Synchronous Motors			
	27	Revision/Problem solution			
	28	Unit 2: 3-Phase Induction			
		Motors			
	29	Classification of AC Motors			
	30,31	Motor			
	32	Comparison of Squirrel Cage and Wound Rotor			

33	Production of Rotating Magnetic Field	
34,35	Principle of operation, slip and its significance	
36,37	Similarity between Induction Motor and Transformer	
38	Equivalent Circuit of Induction Motor	
39	Torque developed in Induction Motor	
40	Condition for Maximum Starting Torque	
41,42	Relation between Full load torque, Starting Torque and Maximum Torque.	
43	Torque Slip Curve	
44	Power flow diagram of an induction motor	
45,46	Starting of Induction Motors	
47,48	Speed Control of Induction Motors	
49,50	Crawling, Cogging and Skewing	
51	Applications of 3- phase Induction motor	
52	Unit 3: Single Phase Motors	
53	Single phase induction motors;Construction characteristics,specifications and applications	
54	Nature of field produced in singlephase induction motor- doublerevolving field theory.	
55	Split phase induction motor	
56	Alternating current series motor and universal motors, construction, working principle and operation, application.	
57	Single phase synchronous motor: Reluctance Motor	
58	Hysteresis Motor	
59	Special Purpose Machines Linear induction motor	
60	Stepper motor	

61	AC Servomotor	
62	Submersible Motor	

Name of the Faculty	:	MS. SHARMILA/ Mr. MOHD. MOHSIN
Discipline	:	Electrical Engineering
Semester	:	4 th Semester
Subject	:	Programming Skills
Lesson Plan Duration	:	14-15 Week

Week	Theory		Practical		
	Lecture	Торіс	Practical	Торіс	
	day		Day		
	1	Introduction to electrical CAD			
		interface			
	2	Adding a Drawing, Create a new			
		Drawing,			
	3	insert wire,			
	4	Insert a Electrical Component,			
	5	Connecting a component.			
	6	Introduction to MATLAB			
	7	MATLAB Programming – input/output			
	8	types of graphs			
	9	functions,			
		loops, structures, MATLAB Simulink.			
	10	MATLAB Simulink.			
	11	Different program based on matlab			
	12	Graphical Programming using			
		LabVIEW including creation of VIs			
	13	subVIs,			
	14	structures, arrays, clusters, charts			
		and graphs, strings, File I/Os.			

Name of the Faculty	:	Mohd. Mohsin
Discipline	:	Electrical Engineering
Semester	:	6 th Semester
Subject	:	ELECTRICAL ENERGY CONSERVATION AND MANAGEMENT
Lesson Plan Duration	:	14-15 Week

Week	Theory		Practical		
	Lecture	Topic (including assignment / test)	Practical	Торіс	
	Day		Day		
	1	Basic definitions- Lux, lumen and	-		
		illumination space to height ratio			
	2, 3	Types of different lamps and their			
		features, Energy efficient practices in			
		lighting			
	4	Tips for energy saving in building -			
		New Building, Existing Building, Laws			
		of Illumination			
	5	Calculation of illumination at different			
		points, Main requirements for proper			
		lighting, Macro level approach at			
		design stage			
	6	Energy Conservation and EC Act			
		2001			
		Introduction to energy management,			
		energy conservation, energy			
		efficiency and its need			
	7, 8	Salient features of Energy			
		Conservation Act 2001 & The Energy			
		Conservation (Amendment) Act, 2010			
		and its importance			
	9, 10	Standards and Labeling - Concept of			
		star rating and its importance, Types			
	4.4	of product available for star rating			
	11	Energy Audit			
	40	I ypes and methodology			
	12	Energy auditing reporting format			
	13	Energy audit instruments			
	14	Electrical Supply System and Motor			
		I ypes of electrical supply system,			
		Single line diagram,			
	45				
	15	transformers			
		Motor Loading			
	16	Variation in efficiency and power			
		factor with loading			
	17	Tipe for anergy savings in motors			
		Need for energy savings in motors			
	18	Initial cost versus like cycle cost			
	10	Initial COSt VEISUS IINE CYCLE COSL			

19	Cost analysis on life cycle basis,	
	Various constructional features of	
	EEMs	
20	EEM as compared to standard motors	
21	Understanding Electricity Bill,	
	Tariff structure	
22, 23	Components of power (kW, kVA and	
	kVAR) and power factor	
24	Concept of sanctioned load,	
	maximum demand, contract demand	
	and monthly minimum charges	
	(MMC)	
25	Pumps	
	Introduction to pump and its	
	application	
 26	Efficient pumping system operation	
27	Energy efficiency in agriculture	
	pumps	
 28	Tips for energy saving in pumps	
29, 30	Compressed Air System	
	Types of air compressor and its	
 	applications	
 31	Leakage test	
32	Energy saving opportunities in	
 	compressors	
33	Energy Conservation in HVAC and	
 24.25	Reingeration System : Introduction	
34, 35		
 26	(EER)	
50	Heating Ventilation	
 37	Air-conditioning (HV/AC) and	
01	Refrigeration Systems	
38 39	Thermal Basics:	
00,00	Types of fuels	
40	Thermal energy	
41	Energy contents in fuel	
42.43	Energy Units and its conversion in	
,	terms of metric tonne of oil equivalent	
	(MTOE)	
44, 45	General Energy Saving Tips	
	Lighting System	
46	Room Air Conditioners	
47	Refrigerators	
48	Water Heater	
49	Computers	
50, 51	Fans, Heaters, Blowers and Washing	
	Machines	
 52	Water Pumps	
53	Kitchens	
54	Transport	
55	Energy Conservation Building Code	
	Haryana ECBC and its salient features	
	including thermal behavior of buildings	

56	ECBC Guidelines on Building
	Envelope
57	ECBC Prescriptive Requirements for
	Building Envelope
58	ECBC Guidelines on Heating,
	Ventilation and Air Conditioning
59	ECBC Guidelines on Service Hot
	Water and Pumping
60	ECBC Guidelines on Lighting
61	ECBC Guidelines on Electrical Power
62	ECBC Guidelines on Star Labelling
	and Minimum Star rating

Name of the Faculty	:	MS. Parul Trake
Discipline	:	Electrical Engineering
Semester	:	6 th Semester
Subject	:	INDUSTRIAL ELECTRONICS AND CONTROL OF DRIVES
Lesson Plan Duration	:	14-15 Week

Week	Theory		Practical			
	Lecture	Topic (including assignment / test)	Practical	Торіс		
	Day		Day			
	1	Construction and working principles of an SCR	1	To draw V-I characteristics of an SCR		
	2	Two transistor analogy and characteristics of SCR	2	To draw V-I characteristics of a TRIAC		
	3	SCR specifications and rating	3	To draw V-I characteristics of a DIAC		
	4	Construction, working principles and V-I characteristics of DIAC	4	To draw uni-junction transistor characteristics		
	5	TRIAC and Quadriac	5	Observe the output wave of an UJT relaxation oscillator		
	6	Basic idea about the selection of heat sinks for SCR and TRIACS	6	Observe the wave shape across SCR and load of an illumination control circuit		
	7,8	Methods of triggering a Thyristor. Study of triggering circuits	7	Fan speed regulator using TRIAC Quadriac (fabrication of this circuit)		
	9	UJT, its Construction, working principles and V-I characteristics, UJT relaxation oscillator	8	Speed-control of a DC shunt motor or universal motor		
	10	Commutation of Thyristors (Concept)	9	To observe the output wave shape on CRO of a Single phase half controlled full wave rectifier		
	11	Series and parallel operation of Thyristors	10	Single phase controlled rectifier		
	12	Applications of SCR	11	Use of Variable Frequency Drive for running a 3 phase Induction motor		

13	TRIACS and Quadriac such as light	
	intensity control	
14, 15	Speed control of DC and universal	
	motor, fan regulator, battery charger	
	etc.	
16	dv/dt and di/dt protection of SCR.	
17,18	Single phase half wave controlled	
	rectifier with resistive load and	
	inductive load, concept of free	
	wheeling diode	
19	Single phase half controlled full wave	
	rectifier (No mathematical derivation)	
20	Single phase fully controlled full	
	wave rectifier bridge (Workshops	
	only)	
21	Single phase full wave centre tapped	
	rectifier (Workshops only)	
22	Three phase full wave half controlled	
 	bridge rectifier (Workshops only)	
23	I hree phase full wave fully controlled	
 24	bridge rectifier (worksnops only)	
24	nvener-introduction, working	
 05.00	principles	
25, 26	voltage and current driven series and	
 27	Choppers-introduction	
 28 29	Types of choppers and their working	
20,20	principles and applications	
30,31	Dual converters-introduction, working	
	principles and applications	
32,33,34	Cyclo-converters- introduction, types,	
 	working principles and applications	
 35	DC drives control (Basic Concept)	
 30	Half wave drives	
37,38	Chapper drives	
 39	AC drives control	
 40,41	AC drives control	
42	Variable frequency a c. drives	
 43	Constant V/E application	
 45.46	Voltage controlled inverter drives	
47	Constant current inverter drives	
 48.49	Cyclo convertors controlled AC drives	
50, 51	Slip control AC drives	
52	UPS	
53	Stabilizers	
54	SMPS	
55	UPS online, off line	
 56	Storage devices (batteries) and their	
	maintenance	

Name of the Faculty	:	MS. SHARMILA
Discipline	:	Electrical Engineering
Semester	:	6 th Semester
Subject	:	ELECTRICAL POWER-II
Lesson Plan Duration	:	14-15 Week

Week	Theory		Practical		
	Lecture	Topic (including assignment / test)	Practical	Торіс	
	Day		Day		
	1, 2, 3, 4	Common type of faults in both overhead and underground systems, symmetrical/ unsymmetrical faults. Single line to ground fault, double line to ground fault, 3-phase to ground fault open circuit, simple problems relating to fault finding.	1, 2	Testing of the dielectric strength of transformer oil and air	
	5, 6, 7	Purpose of protective gear. Difference between switch, isolator and circuit breakers. Function of isolator and circuit breaker. Making capacity and breaking capacity of circuit breaker (only definition)	3, 4, 5	Study of different types of circuit breakers and isolators	
	8, 9, 10	Circuit breakers. Types of circuit breakers, bulk and minimum oil circuit breakers, air SF6 circuit breakers	6	Plot the time current characteristics of over current relay	
	12, 13, 14	Principles of Arc extinction blast circuit breakers in OCB and ACB, Constructional features of OCB, ACB, and their working, Method of arc extinction	7	Power measurement by using CTs and PTs	
	14, 15, 16	MCB, MCCB, ELCB	8, 9, 10	Earthing of different equipment/Main Distribution Board and Energy Meter Box	
	17	Fuses; function of fuse. Types of fuses, HV and LV fuses, rewire-able, cartridge, HRC	11, 12	Perform the overload and short circuit test of MCB as per IS specifications	
	18, 19, 20, 21, 22	Earthing: purpose of earthing, method of earthing, Equipment earthing, Substation earthing, system earthing as per Indian Electricity rules. Methods of reducing earth resistance.	13	Plot the time-current characteristics of Kit-Kat fuse wire	
	22	Introduction - types of relays	14	Taking reading of current on any LT line with clip on meter	
	23, 24, 25	Electromagnetic and thermal relays, their construction and working			

26, 27	Induction type over-current, earth fault relays, instantaneous over	
	current relay	
28	Directional over-current, differential	
 	relays, their functions	
 29	Distance relays, their functions	
30, 31	Idea of static relays and their applications	
32, 33	Relays for generator protection	
34, 35	Relays for transformer, protection	
 36.37	Protection of feeders and bus bars	
38	Over current and earth fault	
	protection.	
39	Distance protection for transmission	
	system	
40	Relays for motor protection	
41, 42,	Protection of system against over	
43	voltages, causes of over voltages,	
	utility of ground wire	
44, 45,	Lightning arrestors, rod gap, horn	
 46	gap, metal oxide type	
47, 48,	Transmission Line and substation	
49, 50	protection against over-voltages and	
	lightning	
51, 52	Concept of Tariffs	
53, 54	Block rate, flat rate, maximum	
	demand and two part tariffs	
55, 56	Simple problems	

Name of the Faculty	:	SH. Surender Malik
Discipline	:	Electrical Engineering
Semester	:	6 th Semester
Subject	:	EDM
Lesson Plan Duration	:	14-15 Week

Week	Theory		Practical		
	Lecture	Topic (including assignment / test)	Practical	Торіс	
	Day		Day		
	1	UNIT-1. Introduction to EDM			
	2	Concept /Meaning and its need			
		Qualities and functions of			
	3	entrepreneur and barriers in			
		entrepreneurship			
		Sole proprietorship and partnership			
	4	forms of business organisations			
		Cabarras of assistance by			
	F	Schemes of assistance by			
	Э	Notional State			
		SEC's TCO KVIR DIC Tochnology			
	6	Business Incubator (TBI)			
		Science and Technology			
	7	Entrepreneur Parks (STEP)			
		District level: NSIC, NRDC,			
	8	DC:MSME, SIDBI			
	9	NABARD, Commercial Banks			
	10	Assessment of demand and supply in			
		potential areas of growth			
	11	UNIT-2. Market Survey and			
		Opportunity Identification			
	12	Scanning of business environment			
		Salient features of National and State			
	13	industrial policies and resultant			
		business opportunities			
	14	Considerations in product selection			
	15	Sectional Test 1			
	10	Jessional Test-T			
	10				
	10	Conduct of market survey			
	10	LINIT 3 Proliminary project report			
	19	Divisional Properties			
	20	Detailed project report including			
	21	technical economic and market			
	2 1	feasibility			
	+	Common errors in project report			
	22	preparations			

	7 2	Exercises on preparation of project	
	23	report	
2	24	UNIT-4. Introduction to Management	
		Definitions and importance of	
		management	
	25	Functions of management:	
		Importance and Process of planning,	
		controlling	
		Types of industrial organizations: Line	
2	26	organization, Line and staff	
		organization, Functional Organisation	
		Principles of management (Henri	
2	27	Fayol, F.W. Taylor)	
		Concept and structure of an	
		UNIT 5: Loodorphip and Mativation	
2	28	Leadership: Definition and Need	
		Qualities and functions of a leader.	
2	29	Motivation: Definitions and	
		characteristics	
3	30	Sessional Test- 2	
3	31	Factors affecting motivation	
3	32	Manager Vs leader	
3	33	Types of leadership	
	34	Theories of motivation (Maslow,	
`	0-1	Herzberg, McGregor)	
		UNIT-6: Management Scope in	
		Different Areas	
	2 E	Human Resource Management	
	55	Introduction to Man power planning	
		recruitment and selection Introduction	
		to performance appraisal methods	
		Material and Store Management:	
3	36	Introduction functions, and objectives,	
3	37	ABC Analysis and EOQ	
	38	Marketing and sales: Introduction,	
	50	importance, and its functions	
3	39	Physical distribution, Introduction to	
		Financial Management Introductions	
4	40	importance and its functions	
		Elementary knowledge of income tax,	
4	41	sales tax, excise duty, custom duty	
		UNIT-7: Miscellaneous Topics	
4	42	(CDM) Definition and need Types of	
		Total Quality Management (TOM)	
		Statistical process control. Total	
4	43	employees Involvement. Just in time	
		(JIT)	
4	44	Intellectual Property Right (IPR)	

	:Introductions, definition and its	
	importance, Infringement related to	
	patents, copy right, trade mark	
45	Sessional Test-3	