Name of the Faculty	:	Ms. Parul Trake
Discipline	:	Electrical Engineering
Semester	:	5 th Semester
Subject	:	INSTRUMENTATION
Lesson Plan Duration	:	13-15 Week

Week	Theory		Practical		
	Lecture	Topic (including assignment / test)	Practical	Торіс	
	Day		Day		
	1	Importance of measurement	1	To measure the level of a liquid	
				using a transducer	
	2	Basic measuring systems	2	To measure temperature using a	
				thermo-couple	
	3	Advantages and limitationsof each	3	Study and use of digital	
		measuring systems		temperature controller	
	4	Generalized measurement system	4	Use of themistor in ON/OFF	
				transducer	
	5, 6,	Signal conditioningand display	5	Study of variable capacitive	
	7, 8	devices		transducer	
	9	Transducers: Theory	6	Draw the characteristics of a	
				potentiometer	
	10, 11	Construction and use of various	7	To measure linear displacement	
	1.0	transducers like resistance			
	12	Inductance, capacitance	8	I o study the use of electrical	
	40			strain gauge	
	13	Electromagnetic	9	I o study weighing machine	
		Diama ale stais terra	10		
	14, 15	Plezo electric type	10	To study pH meter	
	16	Displacement Measuring Devices:			
	17				
	10 10	LVDI Straingaugaa and their differenttypea			
	10, 19,	Straingauges and their differentlypes			
	20	type wire and			
		foil type etc			
	21	Gauge factor, gauge materials, and			
		their selections			
	22.23	Sources of errorsand			
	,	itscompensations			
	24	Use of electrical strain gauges			
	25. 26.	Strain gauge bridges and amplifiers			
	27				
	28, 29	Different types of force measuring			
		devices and their principles			
	30	Loadmeasurements by using elastic			
		Transducers			
	31	Loadmeasurements by using			
		electrical strain gauges			
	32	Loadcells, proving rings			

33, 34	Measurements of torque by brake,	
	dynamometer	
35	Electricalstrain gauges	
36	Speed measurements; different	
	methods, devices.	
37	Bourdon pressure gauges, electrical	
	pressure pick ups and their principle	
38	Construction and applications	
39	Use of pressure cells	
40	Basic principles of magnetic and	
	ultrasonic flow meters	
41	Bimetallic thermometer	
42	Pressure thermometers	
43, 44	Thermoelectric thermometers,	
	resistance thermometers,	
	thermocouple, thermisters and	
	pyrometer	
45	Errors intemperature measurements	
	in rapidly moving fluids. Temperature	
	recorders	
46, 47	Measurement of other non electrical	
	quantities such as humidity, pH level	
	andvibrations	
48	Revision of Topics already covered	
 49	Class Test	
50	Problems, Doubts & their solution	
51	Revision of important topics	

Name of the Faculty	:	Mr. R.L. Saini
Discipline	:	Electrical Engineering
Semester	:	5 th Semester
Subject	:	UTILIZATION OF ELECTRICAL ENERGY
Lesson Plan Duration	:	13-15 Week

Week	Theory		Practical		
	Lecture	Topic (including assignment / test)	Practical	Торіс	
	Day		Day		
	1	Advantage of Electric heating			
	2, 3	Heating Methods :Resistance heating			
		- direct and indirect resistance			
		heating, electric ovens, their			
		temperature range, properties of			
		resistance heating elements,			
		domestic water heaters and other			
		heating appliances, thermostat			
		control circuit			
	4	Induction heating; principle of core			
		type and coreless induction furnace,			
		their construction and applications			
	5	Electric arc heating; direct and			
		indirect arc heating, construction,			
		working and applications of arc			
	6, 7	Dielectric heating, applications in			
		various industrial fields			
		Infra-red neating and its applications			
	0	Appliances) Microwaya basting and its			
	0	applications (construction and			
		working of two appliances) Solar			
		Heating			
	9	Calculation of resistance heating			
	-	elements (simple problems)			
	10, 11	Advantages of electric welding,			
		Welding method,			
		Principles of resistance welding,			
		types – spot, projection, seam and			
		butt welding, welding equipment			
	12, 13	Principle of arc production, electric			
		arc welding, characteristics of arc;			
		carbon arc, metal arc, hydrogen arc			
		welding method and their			
		applications. Power supply			
		requirement. Advantages of using			
		coated electrodes, comparison			
		between AC and DC arc welding,			
		welding control circuits, welding of			

		aluminum and copper	
	14, 15	Need of electro-deposition,	
		Laws of electrolysis, process of	
		electro-deposition - clearing,	
		operation, deposition of metals,	
	16	polishing and buffering, Equipment	
		and accessories for electroplating	
	17	Factors affecting electro-deposition,	
		Principle of galvanizing and its	
		applications	
	18	Principles of anodizing and its	
		applications	
	19	Electroplating of non-conducting	
		materials	
	20	Manufacture of chemicals by	
		electrolytic process	
	21, 22	Principle of air conditioning, vapour	
		pressure, refrigeration cycle, eco-	
	00.04	friendly refrigerants	
	23, 24	Description of Electrical circuit used in	
		a) Reingerator,	
		c) Water cooler	
	25	Advantages of electric drives	
	23	Characteristics of different	
		mechanical loads	
	26	Types of motors used as electric drive	
	28	General idea about the methods of	
	20	power transfer by direct coupling by	
		usingdevices like belt drive gears	
		chain drives etc.	
	29	Examples of selection of motors for different	
		types of domestic loads	
	30	Selection of drive for applications	
		such as general workshop, textile mill,	
		paper mill, steel mill, printing press,	
		crane and lift etc. Application of	
		flywheel.	
	31, 32	Selection of motors for Domestic	
		Appliances	
	33, 34	Advantages of electric traction over	
		other types of traction.,	
		Different systems of electric traction,	
		DC and AC systems, diesel electric	
		system, types of services – urban,	
		sub-urban, and main line and their	
	05.00	speed-time curves.	
	35, 36	Different accessories for track	
		electrification; such as overhead	
		catenary wire, conductor rail system,	
	07.00	current collector-pentagraph	
	37,38	Factors affecting scheduled speed	
	39		
		aguinment and accessories used	
1		GYUIPHICH AND ALLESSUNES USED.	

40	Types of motors used for electric traction	
41	Power supply arrangements	
42	Starting and braking of electric locomotives	
43, 44	Introduction to EMU and metro railways	
45, 46	Train Lighting Scheme	
47, 48	Revision of Topics already covered	
49	Class Test	
50	Problems, Doubts & their solution	
51	Revision of important topics	

Name of the Faculty	:	Ms. Poonam Saini
Discipline	:	Electrical Engineering
Semester	:	5 th Semester
Subject	:	PROGRAMMABLE LOGIC CONTROLLERS & MC
Lesson Plan Duration	:	13-15 Week

Week	Theory		Practical		
	Lecture	Topic (including assignment / test)	Practical	Торіс	
	Day		Day		
	1, 2, 3, 4, 5, 6	Introduction to PLC, What is PLC, concept of PLC, Building blocks of limitations of relays. Advantages of PLCs over programming languages, PLC manufacturer etc. PLC, Functions of various blocks,	1, 2	Components/sub-components of a PLC, Learning functions of different modules of a PLC system	
	7, 8	Basic operation and principles of PLC	3, 4	Practical steps in programming a PLC (a) using a Hand held programmer (b) using computer interface	
	9, 10	Architectural details processor	5, 6	Demonstration to step 5 programming language, ladder diagram concepts, instruction list syntax	
	11, 12	Memory structures, I/O structure	7, 8	Basic logic operations, AND, OR, NOT functions	
	13, 14	Programming terminal, power supply	9	Logic control systems with time response as applied to clamping operation	
	15	Basic instructions like latch, master control self holding relays	10	Sequence control system e.g. in lifting a device for packaging andcounting	
	16	Timer instruction like retentive timers, resetting of timers	11	Use of PLC for an application(teacher may decide)	
	17	Counter instructions like up counter, down counter, resetting of counters	12	Demonstration and study of Architecture of 8085 kit	
	18	Arithmetic Instructions (ADD,SUB,DIV,MUL etc.)	13	Testing of general input/output on Micro controller board	
	19	MOV instruction	14	Controlling of LED using Microcontroller Programme	
	20	RTC(Real Time Clock Function)			
	21, 22	Comparison instructions like equal, not equal, greater, greater than equal, less than, less than equal			
	23, 24, 25, 26, 27	Programming based on basic instructions, timer, counter, sequencer, and comparison instructions using ladder program.			
	28	Assembly,			

	Packaging,	
	Process controls	
29, 30	Car parking,	
	Doorbell operation,	
	Traffic light control	
31, 32	Microwave Oven,	
	Washing machine,	
	Motor in forward and reverse direction	
33, 34,	Star-Delta, DOL Starters,	
35	Paint Industry,	
	Filling of Bottles,	
	Room Automation	
36, 37	Introduction to SCADA	
38	Pin details	
39, 40	I/o Port structure	
41, 42,	Memory Organisation	
43		
44, 45,	Special function registers	
46		
47, 48	Timer operation	
49, 50	Serial Port operation	
51, 52	Interrupts	
53, 55	Assemblers and Compilers	
55, 56,	Keypad interface, 7- segment	
57	interface, LCD, stepper motor. A/D,	
	D/A,	
	RTC interface.	
58	Application of Micro controllers	
59, 60	Revision of Topics already covered	
61	Class Test	
62	Problems, Doubts & their solution	
63, 64	Revision of important topics	

Name of the Faculty	:	Mr. Moh. Mohsin
Discipline	:	Electrical Engineering
Semester	:	5 th Semester
Subject	:	Electrical Machines-II

Lesson Plan Duration : 13-15 Week

Week	Theory		Practical		
	Lecture	Topic (including assignment / test)	Practical	Торіс	
	Day		Day		
	1	Introduction to 3-Phase Induction Motor	1	Determination of efficiency by (a) no load test and blocked rotor test on an induction motor (b) direct loading of an I.M.	
	2	Constructional features of squirrel cage and slip ring 3-phase induction Motors	2	Determination of effect of rotor resistance on torque speed curve of an induction motor	
	3	Principle of operation, slip and its significance	3	Observe the performance of Ceiling fan without capacitor To study the effect of a capacitor on the performance single phase induction motor and reverse the direction of rotation.	
	4	Locking of rotor and stator fields	4	To plot relationship between no load terminal voltage and excitation current in a synchronous generator at constant speed	
	5	Rotor resistance, inductance	5	Determination of the relationship between the voltage and load current of an alternator, keeping excitation and speed	
	6	Relationship between copper loss and motor slip	6	Determination of the regulation and efficiency of alternator from the open circuit and short circuit test	
	7	Power flow diagram of an induction motor	7	Determination of the effect of variation of excitation on performance of a synchronous motor	
	8	Factors determining the torque, Torque-slip curve, stable and unstable zones			
	9	Effect of rotor resistance upon the torque slip relationship			
	10	Double cage rotor motor and its applications			
	11	Starting of 3-phase induction motors,			

	DOL	
12	Star-delta, auto transformer starting	
12	Causes of low power factor of induction	
15	motors	
14	Testing of 3-phase induction motor on no	
14	load	
15	And blocked rotor test and to find	
15	efficiency	
16	Speed control of induction motor	
17	Harmonics and its effects	
10	Cogging and crawling in Induction	
10	Motors	
10	Specification and rating of induction	
19	motor	
20	Single phase induction motors	
21	Construction characteristics and	
21	applications	
22	Nature of field produced in single phase	
22	induction motor	
23	Split phase induction motors	
24	Type of Induction Motor	
25	Capacitors start and run	
26	Shaded pole	
27	Alternating current series motor and	
27	universal motors	
28	1-phase synchronous motor Reluctance	
20	type	
29	Brief description about Synchronous	
	Motor	
30	Hysteresis motor	
 31	Synchronous Machines	
	Main Construction features of	
32	Synchronous Machines including	
	commutator and brushless excitation	
	system.	
33	phase winding	
34	Generation of 3-phase emf	
54	Concept of distribution factor and emf	
35	equation	
26	Armature reaction at unity, lag and leading	
50	power factor	
37	Equivalent circuit diagram of	
	synchronous machine	
	Concept of voltage regulation.	
38	Determination of voltage regulation by	
	synchronous impedance method.	
39	Operation of single synchronous machine	

	independently supplying a load.	
	Concept of infinite bus bar. Need and	
40	necessary conditions of paralleloperation	
40	of alternators, Synchronizing analternator	
	(Synchroscopemethod) with the bus bars	
41	Operation of synchronous machine as a motor	
71	-its starting methods	
	Effect of change in excitation of a	
 42	synchronous motor, V curve, Concept	
	of synchronous condenser.	
43	Concept and cause of hunting and its	
10	prevention	
44	Specification, rating and cooling of	
	synchronous machines	
45	Applications of synchronous machines	
	Construction, working principle and	
16 17	application of linear induction motor,	
40, 47	steppermotor, AC Servomotor,	
	Submersible Motor,	
48	Revision of Topics already covered	
49	Class Test	
50	Problems, Doubts & their solution	
51	Revision of important topics	

Name of the Faculty	:	Mrs. Sharmila
Discipline	:	Electrical Engineering
Semester	:	5 th Semester
Subject	:	ELECTRICAL POWER -I

Lesson Plan Duration : 13-15 Week

Week	Theory		Practical		
	Lecture	Topic (including assignment / test)	Practical	Торіс	
	Day		Day		
	1	Main resources of energy			
	2	Conventional and non-			
		conventional			
	3	Different types of power stations,			
		thermal, hydro, gas			
	4	Diesel and nuclear power stations			
	5, 6	Flow diagrams and brief details of their			
		operation, Comparison of the			
		generating stations on the basis of			
		maintenance			
	7	Importance of non-conventional			
		sources of energy in the present			
		scenario			
	8	Brief details of solar energy, bio-			
		energy, wind energy			
	9	Fixed and running cost			
	10	Load estimation, load curves.			
		demand factor			
	11	Load factor, diversity factor, power			
		factor and their effect on cost of			
		generation, simple problems there			
		on			
	12, 13	Base load and peak load power			
		stations, inter-connection of power			
		stations and its advantages,			
		concept of regional and national			
		grid			
	14, 15	Layout of transmission system,			
		selection of voltage for H.T and L.T			
		lines, advantages of high voltage for			
		Transmission of power in both AC			
	16 47	and DC			
	10, 17	Comparison of different systems:			
		AC versus DC for power			
	10				
	18	Conductor material and sizes from			
		standard tables			

19	Types of supports, types of	
	insulators	
20	Types of conductors. Selection of	
	insulators, conductors, earth wire	
	and their accessories	
 21	Transposition of conductors and	
	string efficiency of suspension	
	type insulators Bundle	
	Conductors	
 22	Mechanical features of line:	
22	Importance of sag, calculation of sag	
 23, 24	Effects of wind and ice related	
_0,	problems; Indian electricity rules	
	pertaining to clearance	
25, 26,	Electrical features of line:	
	Calculation of resistance inductance	
	and capacitance without derivation	
	in a.c. transmission line, voltage	
	regulation, and concept of corona.	
28	Effects of corona and remedial	
	measures	
29	Transmission Losses	
30	Lay out of HT and LT distribution	
	system	
31	Constructional feature of distribution	
 	lines and their erection	
32, 33	LT feeders and service mains; Simple	
	problems on AC radial distribution	
	system, determination of size of	
 24	Droparation of actimates of HT and	
34	Teparation of estimates of FT and	
 35 36	Constructional features of $I T (400 V)$ HT	
00, 00	(II kV) underground cables, advantages	
	and disadvantages of underground	
	system with respect to overhead system	
37	Calculation of losses in distribution	
 	system	
38, 39	Faults in underground cables-	
	determine fault location by Murray	
 	Loop lest	
 40	Varley Loop Test	
41, 42	Brief idea about substations; out door grid	
	sub-station 220/132 KV, 66/33 KV	
	outdoorsubstations	
43	Pole mounted substations and indoor	
 	substation	
44, 45,	Layout of 33/11 and kV/400V	
46	distribution substation and various	
	auxiliaries and equipment	
	associated with it	
 47	Concept of power factor Reasons	
	and disadvantages of low power factor	

48	Methods for improvement of power factor using capacitor banks, VAR Static Compensator (SVC)	
49	Revision of Topics already covered	
50	Class Test	
51	Problems, Doubts & their solution	

Name of the Faculty	:	Ms. Parul Trake
Discipline	:	Electrical Engineering
Semester	:	3 th Semester
Subject	:	Analog and Digital Electronics
Lesson Plan Duration	:	13-15 Week

Week	Theory		Practical		
WCCR	Lecture	Topic (including assignment /	Practical	Tonic	
	Dav	test)	Dav		
	1,2	Concept of insulators, conductors and semiconductors	1	To Plot V-I characteristics of a PN junction diode, To Plot V-I characteristics of a Zener diode, Observe the output of waveform:	
	3,4	Intrinsic and extrinsic semiconductor	2	Half-wave rectifier circuit using one diode, Full-wave rectifier circuit using two diodes	
	5,6	P and N type semiconductor and their conductivity	3	Observe the output of waveform of Bridge-rectifier circuit using four diodes.	
	7, 8	Effect of temperature on conductivity of intrinsic semiconductor	4	Plotting of input and output characteristics and calculation of parameters of transistors in CE configuration., Plotting of input and output characteristics and calculation of parameters of transistors in CB configuration	
	9,10	PN junction diode, mechanism of current flow in PN junction	5	To study weighing machine using load cell	
	11,12	Forward and reverse biased PN junction, potential barrier	6	Plotting of V-I characteristics of a FET	
	13	Drift and diffusion currents, depletion layer	7	Basic logic operations of AND, OR, NOT gates	
	14, 15	V-I characteristics of diodes	8	Verification of truth tables for NAND, NOR and Exclusive OR (EX-OR) and Exclusive NOR (EX-NOR) gates	
	16, 17	Diode as half-wave, full wave and bridge rectifiers, Peak Inverse Voltage, rectification efficiencies and ripple factor calculations	9	Realization of logic functions with the help of NAND or NOR gates.	
	18, 19, 18	Concept of filters,	10	To design a half adder using XOR and NAND gates and	

			verification of its operations.
20	Types of diodes, characteristics	11	Construction of a full adder
	and applications of Zener diodes		circuit using XOR and NAND
 			gates and verify its operation
21	Concept of a bipolar transistor,	12	Verification of truth table for
	PNP and NPN transistors, CB, CE,		IC flip-flops (At least one IC
	CC configurations of a transistor		each of D latch, D flip-flop, JK
 		4.0	tlip-tlops)
22, 23,	Transistor as an amplifier in CE	13	Verification of truth table for
24	Configuration, Current		encoder and decoder ICs.
	amplification factors, Comparison		Verification of truth table for
 05.00	of CB, CE and CC Configurations		Mux and De-Mux
25, 26	Construction, operation and		
	characteristics of FEIs, FEI as an		
 07.00	amplifier		
21,20	Construction, operation and		
	characteristics of a MOSFEL,		
	Comparison of JFET, MOSFET and		
 20.20	BJI Distinction between engles and		
29, 30	digital signal Desimal Binary		
	actal and havadasimal number		
	system		
 21 22	Conversion from desimal and		
33	hevadecimal to hinary and vice-		
00	versa. Binary addition and		
	subtraction		
 34 35	Sequential Circuits such as Half		
01,00	adder Full adder		
 36	Mux. De-Mux. Encoder and		
	Decoder		
 37, 38	Combinational Circuits like Latch,		
	Flip Flops, shift registers and		
	counters		
39, 40	A/D and D/A Converters and its		
	Applications		
41	Revision of important topics		

Name of the Faculty	:	Ms. Parul Trake
Discipline	:	Electrical Engineering
Semester	:	3 th Semester
Subject	:	Electrical Measuring instruments and instrumentation
Lesson Plan Duration	:	13-15 Week

Week	Theory		Practical		
	Lecture	Topic (including assignment /	Practical	Торіс	
	Day	test)	Day		
	1	Significance of measurement, errors in measurement, types of error	1	Use of analog and digital multimeter for measurement of voltage, current (A.C/D.C) and resistance	
	2	Classification of measuring instruments: indicating, recording, and integrating instruments; Essential requirements of an indicating instruments	2	To measure the value of earth resistance using earth tester.	
	3, 4	Concept of Ammeter, voltmeter, ammeter, construction, working principle	3	To measure power, power factor in a single-phase circuit, using wattmeter and power factor meter and to verify results with calculations.	
	5	Merits, demerits and comparison of moving coil, moving iron meter, rectifier type	4	Measurement of power and power factor of a three- phase balanced load by two wattmeter method.	
	6,7	Extension of range and calibration of voltmeter and ammeter, Errors and compensation	5	Measurement of voltage and frequency of a sinusoidal signal using CRO and draw wave shape of signal.	
	8	Construction, working principle, merits and demerits of dynamometer wattmeter	6	Measurement of power in a 3 phase circuit using CT, PT and 3-phase wattmeter.	
	9, 10	Digital wattmeter, Active and reactive power measurement by , two and three wattmeter method.	7	Use of LCR meter for measuring inductance, capacitance and resistance.	
	11, 12	Effect of Power factor on wattmeter reading in two wattmeter method, Maximum Demand indicator	8	To record all electrical quantities from the meters installed in the institution premises	
	13, 14, 15	Construction, working principle, merits and demerits of single- phase and three-phase energy meters (Induction type), Errors	9	To measure Energy at different Loads using Single Phase Digital Energy meter. T	

		and their compensations		
	16	Calibration of energy meter using	10	Calibration of single phase
		direct loading		and three-phase energy
				meter.
	17	Digital energy meter (diagram,	11	Measurement of pressure by
		construction and application)		using LVDT
	18, 19,	Construction, working principle	12	To measure temperature
	20	and application of Meggar, Earth		using a thermo-couple,
		tester (analog and digital), multi-		Measurement of
		meter (analog and digital),		temperature by using
		Frequency meter (dynamometer		thermistor/Thermal Imager.
		type), single power factor meter		
		(Electrodynamometer type)		
	21, 22	Working principle of	13	To measure the strain using
		synchroscope and phase		electrical strain gauge
		sequence indicator, tong tester		To measure the pH level
		(Clamp-on meter)		using pH meter
	23	Study of LCR meters and their		
	0.1	applications		
	24	Construction, working and		
	05.00	applications of CI and PI		
	25, 26	Cathode Ray Oscilloscope: Block		
		diagram, working principle of CRO		
	07	and its various controls		
	21	Digital Storage Oscilloscope		
		(DSO), Introduction, Types of		
	28 20	Construction and principle of		
	20, 23	resistive transducer-		
		Potentiometer-variac and strain		
		gauges -No derivation		
	30, 31	Only definition and formula for		
	,	gauge factor. Types of strain		
		gauges like unbonded, bonded		
		and semiconductor		
	32, 33	Construction and principle of		
		Inductive transducers-L.V.D.T. and		
		R.V.D.T, their applications.		
	34.35	Construction, principle and		
		applications of transducers –		
		Piezoelectric transducer, photo-		
		conductive cells, photo voltaic		
		cells.		
	36, 37,	Temperature measurement -		
	38	Construction and Working of RTD,		
		Thermistor and Thermocouple,		
		radiation pyrometer, technical		
		specifications and ranges.		
		Inermal Imager Camera		
	20.40			
1	ວອ, 40	Pressure measurement –	1	

	Construction and working of bourdon tube, bellow diaphragm strain gauge. Measurement of pH Level.	
41	Revision o f important topics	

Name of the Faculty	:	Mr. Surender Malik
Discipline	:	Electrical Engineering
Semester	:	3 th Semester
Subject	:	Electrical Machines-I
Lesson Plan Duration	:	13-15 Week

	THEORY	PRACTICAL			
LECTURE DAY	ТОРІС	PRACTI CAL DAY	ΤΟΡΙϹ		
1	Definition of motor and generator.	1	Measurement of the angular displacement of the rotor of a slip-ring induction motor on		
2	Concept of torque.	2	application of DC to stator of motor winding in sequence and simultaneously to each phase of		
3	Torque development due to alignment of two fields, concept of torque angle.	3	rotor winding		
4	Electro-magnetically induced emf	4	Measurement of the angular displacement of the rotor of a slip-ring induction motor on		
5	Elementary concept of an electrical machine	5	application of DC to stator of motor winding in sequence and simultaneously to each phase of		
6	Main constructional features of DC machines. Comparison of generator and motor,	6	rotor winding		
7	Function of the commutator for motoring action.	7	Speed control of dc shunt motor (i) Armature control method (ii) Field control method		
8	Function of the commutator for generation action	8			
9	Factors determining induced emf ,Factors determining the electromagnetic torque	9			
10	Types of dc generation on the basis of excitation.	10	Speed control of dc shunt motor (i) Armature control method (ii) Field control method		
11	Significance of back e.m.f.voltage built up in a dc shunt generator,	11			
12	the relation between back emf and Terminal voltage.	12			

13	Assignment on Torque development due to alignment of two fields & Comparison of generator and motor	13	Study of dc series motor with starter (to operate the motor on no load for a moment)
14	Armature Reaction, Commutation methods to improve commutation	14	
15	Performance of different types of DC motors characteristics of different types of DC motors	15	
26	Speed control of dc shunt motors	16	Study of dc series motor with starter (to operate the motor on no load for a moment)
17	Speed control of dc series motors	17	
18	Revision /test	18	
19	Need of starter, 4- point starter dc shunt motor	19	Study of 3 point starter for starting D.C. shunt motor.
20	Three point dc shunt motor starter, Applications of DC motors, Losses in a DC machine	20	
21	Determination of losses by Swinburne's test	21	

Name of the Faculty	:	Mr. Mohd. Mohsin
Discipline	:	Electrical Engineering
Semester	:	3 th Semester
Subject	:	EEDD
Lesson Plan Duration	:	13-15 Week

Week	Day	Practical
	1	Unit 1 : Electrical Symbols used in Electrical installation
	2	Drawing sheet1: Design and Drawing of panels/Distribution board using MCB, ELCB main switches and change over switches
	3	Drawing sheet2: Design and Drawing of panels/Distribution board using MCB, ELCB main switches and change over switches
	4	Unit 2 :DOL starting of 3-phase induction motor
	5	3-phase induction motor getting supply from selected feeder
	6	Forwarding/reversing of a 3-phase induction motor
	7	Two speed control of 3-phase induction motor
	8	Sequential operating of two motors using time delay relay
	9	Manually generated star delta starter for 3-phase induction motor
	10	Automatic star delta starter for 3-phase Induction Motor
	11	Draw the wiring diagram of battery and inverter connected to residential load.
	12	Draw the wiring diagram of standalone solar light system with battery for a residential house
	13	Draw the wiring diagram of solar water heating system.
	14	Key diagram of 11kV, 33kV
	15	Key diagram of 66kV sub-stations
	16	Key diagram of 132 kV sub-stations
	17	Draw pipe Earthling.
	18	Draw plate Earthling.
	19	Bus bar post.
	20	Kit Kat Fuse.
	21	Pin type insulator (Pin Type 11kV)
	22	Pin type insulator (Pin Type 66kV)
	23	Rotor of a squirrel cage induction motor
	24	Stator of 3 phase Induction motor (Sectional View)
	25	Revised Sessional Test -1
	26	Revised Sessional Test -2
	27	Revised Sessional Test -3
	28	Revised Sessional Test -3

Name of the Faculty	:	Mr. Mohd. Mohsin
Discipline	:	Electrical Engineering
Semester	:	1 st Semester
Subject	:	PEE
Lesson Plan Duration	:	13-15 Week

Week		Theory		Practical
	Lecture Day	Торіс	Practical Day	Торіс
	1	Introduction, Nature of Electricity, Electric current,		PRACTICAL-1 Familiarization of basic
	2	Electrical Energy, Electrical power andtheir unit.		voltmeter, watt meter, resistance, capacitor, inductor, energy meter, power factor meter, CRO, multi- meter etc and their operation, uses .
	3	Resistance, conductivity and resistivity, resistance properties.	2	PRACTICAL-1
	4	Rating and wattages of Electrical appliances, heating effect of Electrical current. Introduction to Capacitors, capacitance, Variable capacitor, Factors affecting capacitance of a capacitor and its various connections.	L	Fractical-1 Familiarization of basic components/equipment like ammeter, voltmeter, watt meter, resistance, capacitor, inductor, energy meter, power factor meter, CRO, multi- meter etc and their operation, uses .
	5	Factors affecting capacitance of a capacitor and its various connections.	3	PRACTICAL-2 Determine the value of resistance
	6	Energy stored in capacitor, Charging and discharging of a capacitor.		using colour coding method.
	7	Charging and discharging of a capacitor.	4	PRACTICAL-2
	8	REVISION UNIT-1	-	using color coding method.
	9	Unit-2 DC Machines Ohm's law with practical implementation.	5	PRACTICAL-3 Observation of change in resistance of a bulb in hot and cold conditions,
	10	Definition of DC circuit, types of DC circuits		using voltmeter and ammeter
	11	Concept of voltage source & current source, connections and their conversions.	6	PRACTICAL-3 Observation of change in resistance of

12	Concept of voltage source & current source, connections and their conversions.		a bulb in hot and cold conditions, using voltmeter and ammeter
12	Wheatstone Bridge.		PRACTICAL-4
13	Kirchhoff's Laws-KVL and KCL.	7	To charge and discharge a capacitor and to show the graph on C.R.O.
15	Kirchhoff's Laws-KVL and KCL.	Q	PRACTICAL-4
16	Star – Delta connections and their conversion.	5	to show the graph on C.R.O.
17	Revision / Problem solutions		PRACTICAL-5
17		9	Verification of laws of capacitors in
18	UNIT III Electrostatics & Magneto statics		series and parallel.
	Concepts of Electrostatics, Coulomb's law.		
19	Concept of magnetism, Magnetic field, Magnetic lines of force	10	PRACTICAL-5 Verification of laws of capacitors in
20	Definition of Electromagnetism,		series and parallel.
	Magnatic officet of clocky is surrout		
21	direction of magnetic field and current.	11	To verify ohm's law by drawing a graph
			between voltage and current
22	Current carrying conductors in a magnetic field and methods to find its direction, applications		
23	Analogy between electric and magnetic circuit.		
20	Introduction to maintenance free		PRACTICAL-10
39	batteries.	20	To find the rotic of inductors of a set
40	Disposal of batteries	LV	having air-core and iron-core respectively and to observe the effect of introduction of a magnetic core on coil inductance.
41	Revision / Problem solution		PRACTICAL-11
42	REVISION UNIT-1	21	Verification of Faraday's law of electromagnetic induction

43	REVISION UNIT-1		PRACTICAL-11
44	REVISION UNIT-2	22 Verification of Faraday's law electromagnetic induction PRACTICAL-12 PRACTICAL-12 23 To obtain BH curve of a mag material PRACTICAL-12 PRACTICAL-12 24 To obtain BH curve of a mag material PRACTICAL-13 PRACTICAL-13 25 Demonstration of parts of a	
45	REVISION UNIT-2		PRACTICAL-12
46	REVISION UNIT-3	23	To obtain BH curve of a magnetic material
47	REVISION UNIT-3		PRACTICAL-12
48	REVISION UNIT-4	24	To obtain BH curve of a magnetic material
49	REVISION UNIT-4		PRACTICAL-13
50	REVISION UNIT-5	25	Demonstration of parts of a battery and find the specific gravity of battery, Demonstration of charging and discharging of Battery and measure the terminal voltage during charging and discharging condition.
51	REVISION UNIT-5	26	PRACTICAL-13 Demonstration of parts of a battery and
52	Revision All Unit		find the specific gravity of battery, Demonstration of charging and discharging of Battery and measure the terminal voltage During charging and discharging condition.

Name of the Faculty	:	Mrs. Sharmila
Discipline	:	Electrical Engineering
Semester	:	3. Semester
Subject	:	ELECTRICAL AND ELECTRONICS ENGINEERING MATERIALS

Lesson Plan Duration : 13-15 Week

Week	Theory		Practical	
	Lecture	Topic (including assignment / test)	Practical	Topic
	Day		Day	•
	1	Classification of materials into conducting. Semi conducting		
	2	Insulating materials . Atomic theory, Energy band theory, Classifications		
		of materials on the basis of atomic structure and energy bands.		
		Characteristics of materials.		
	3	of conducting material such as low resistivity and high resistivity materials.		
	4.5	Properties and applications of different low resistivity materials such as		
	, -	silver, Gold, copper (hard drawn, annealed copper), aluminum, steel, ACSR		
		and its alloys like copper alloy (brass, bronze) etc.		
	6.7	Properties and applications of different high resistivity material such as		
	- ,	carbon, tungsten, platinum, mercury, lead, and its alloys like Constantan or		
		eureka, Brass phosphor bronze, nichrome, manganin, tin-lead alloy etc.		
	8	Semi-conductors Materials and their Applications.		
	9	Commonly used semiconducting material Germanium and silicon and their		
		properties. Types of Semiconductor etc.		
	10	Characteristics of good Insulating material, Electrical, thermal, chemical,		
		visual, mechanical		
	11	Physical properties of Insulating materials. Types of Insulating materials.		
		classification of insulating material on the basis of temperature		
	12	Gaseous Insulating Materials: Properties and applications of air, nitrogen		
		and sulphur hexafluoride (SF-6) gases		
	13	Liquid Insulating Materials: Properties and applications of Mineral and		
		Insulating oil for transformers (mineral oil), switchgears etc, synthetic		
		insulating liquid (Pyranol).		
	14	Solid Insulating Materials: Properties, types and applications of Plastics		
		such as polyvinyl chloride (PVC), Polyethylene, polystyrene, epoxy resin,		
		Bakelite, Melamines, silicon resins etc		
	15	Natural Insulating materials, properties and their applications: Mica,		
		asbestos, ceramic materials (porcelain and steatite)		
	16	Glass, Cotton, Silk, Jute, Paper (dry and impregnated) Rubber, Bitumen		
	17	Teflon, Silicon Grease, Insulating varnishes for coating and impregnation,		
		Enamels for winding wires, wood etc		
	18	Characteristics and types of magnetic material, Properties of soft magnet		
		material like Iron silicon alloy		
	19,20	Nickel iron alloy, Mu metal, soft ferrites, grain orientation, Cold rolled grain		
		oriented silicon steels (C.R.G.O) etc. and their applications		
	21,22	Properties of hard magnet material like Tungsten steel alloy, chromium		
		steel, cobalt steel, Hard ferrites etc. and their applications.		
	23	Cobalt steel. Hard ferrites etc. and their applications.		

24	Thermocouples, Bimetals, soldering, fuse, materials and their applications	
25	in fabrications of electrical machines such as motors	
26	ors, transformers etc	
27	Class Test	
28,29	Problems, Doubts & their solution	
30	Revision of important topics	

Name of the Faculty	:	Mrs. Sharmila
Discipline	:	Electrical Engineering
Semester	:	1 st Semester
Subject	:	Fundamental of Information Technology

Lesson Plan Duration : 13-15 Week								
Week	Theory		Practical					
	Lecture Day	Topic (including assignment / test)	Practical Day	Торіс				
	1	Brief history of development of computers, Definition of Computer, Block diagram of a Computer, Hardware, Software, Booting: Cold and Hot Booting,	1	Browser features, browsing, using various search engines, writing search queries .				
	2	Interaction between the CPU and Memory with Input/output devices, Function of CPU and major functional parts of CPU.	2	Visit various e- governance/Digital India portals, understand their features, services offered.				
	3	Memory, Bit, Nibble, Byte, KB, MB, GB, TB, PB, Functions of memory, Use of storage devices in a Computer, List types of memory used in a Computer, Importance of cache memory, CPU speed and CPU word length	3	. Read Wikipedia pages on computer hardware components, look at those components in lab, identify them, recognize various ports/interfaces and related cables, etc.				
	4	Understanding browser, Introduction to WWW, efficient use of search engines, awareness about Digital India portals (state and national portals) and college portals.	4	Using Administrative Tools/Control Panel Settings of Operating Systems.				
	5	Advantages of Email, Various email service providers, Creation of email id, sending and receiving emails						
	6	attaching documents with email and drive. Effective use of Gmail, G-Drive, Google Calendar, Google Sites						
	7	Google Sheets, Online mode of communication using Google Meet & WebEx						
	8	Introduction to Programming, Steps involved in problem solving, Definition of Algorithm, Definition of Flowchart						
	9	Steps involved in algorithm development, differentiate algorithm and flowchart, symbols used in flowcharts						
	10	algorithms for simple problems, flowcharts for simple problems						
	11	Practice logic building using flowchart/algorithms						

12	Office Tools like LibreOffice/OpenOffice/MSOffice.	
13	OpenOffice Writer – Typesetting Text and Basic Formatting, Inserting Images, Hyperlinks, Bookmarks, Tables and Table Properties in Writer Introducing LibreOffice/OpenOffice Calc	
14	Working with Cells, Sheets, data, tables, using formulae and functions, using charts and graphics.	
15	OpenOffice Impress – Creating and Viewing Presentations	
16	Inserting Pictures and Tables, Slide Master and Slide Design, Custom Animation.	
17	Introduction to Digital Marketing – Why Digital Marketing, Characteristics of Digital Marketing, Tools for Digital Marketing,	
18	Effective use of Social Media like LinkedIn, Google+, Facebook, Twitter, etc.: Features of Social media	
19	Advantages and Disadvantages of Social Media. Revision of important topics	
20	Class test	