Lesson Plan Plastic Engineering 1st Semester

Lesson Plan- IPST				
Week		ame of Faculty- Sh. Rahul Singh(Theory) Discipline- Plastic Engg. Ibject- IPST Sem. 1st Lession plan duration-15 week		
1^{ST}	Lecture	Торіс		
	DAY			
	1	Unit – I: Introduction to Polymer Science		
	2	Brief History of Polymers		
	3	Physical State of Polymer Crystalline, Amorphous.		
	4	Effect of Physical State on polymer properties		
2^{ND}	5	Introduction to Rheology- Definition, properties and classification of fluids		
	6	Newton's Law of Viscosity, Types of Viscosity		
	7	Effect of Temperature on Viscosity, Effect of Viscosity on Motion, Classification of flow		
	8	Maxwell and voigt model of visco-elasticity, Classification of materials on the basis of visco-elasticity		
3^{rd}	9	Unit –II: Molecular weight of Polymers		
	10	Molecular weight distribution		
	11	practical significance of Polymer Molecular weight		
4^{TH}	12	Poly Dispersity Index (PDI)		
	13	Molecular Weight and its determination		
	14	by dilute solution viscometry		
	15	end group analysis		
5^{TH}	16	membrane osmometry		
	17	vapourphase osmometry		
	18	cryoscopy		
	19	ebulliometry		
6^{TH}	20	light scattering		

	21	centrifugation
	22	Gel permeation chromatography
	23	Class Test-I
7 TH	23	Unit III– Physical State of Polymers
	25	Polymer solutions and solubility
	26	General Rules for Polymer solubility
	27	Solubility Parameters
8 TH	28	Properties of Dilute solutions
	29	Physical State of Polymer
	30	Crystalline, Amorphous and their relation to processing and applications.
	31	Unit – IV Thermal transitions in polymers
9 TH	32	Glass transition temperature, its importance
	33	Factors influencing Glass transition temperature (Tg)
	34	Techniques for its determination
	35	melting temperature
10 TH	10 TH 36Relationship of polymer properties with structure.	
	37	Unit – V Polymer Rheology
	38	Chemical Modification - introduction of Co-polymerization
	39	Importance of copolymers, different types of copolymers, copolymer equation
11 TH	40	Reactivity ratios.
	41	Physical modification
	42	polymer blends and alloys, introduction to composites.
	43	Class test - II
12 TH	44	Unit –VI: Chemistry of Polymerization
	45	Chain growth Polymerization

	46	Free Radical Reaction			
	47	Ionic Reaction			
13 TH	48	Coordination Polymerization			
	49	Step Growth Polymerisation			
	50	Condensation Polymerization			
	51	Ring Opening Polymerization.			
14^{TH}	52	Co-polymerization			
	53	Importance of copolymers, different types of copolymers			
	54	copolymer equation, reactivity ratios			
	55	Unit – VII: Techniques of Polymerization:			
15 TH	56	Bulk, Solution,			
	57	Suspension and Emulsion Polymerization			
	58	their advantages and disadvantages			
	59	Class Test-III			
	60	Revision			

Lesson Plan Plastic Engineering 3rd Semester

Name of Faculty: Sh. Sunil Kumar (Theory)/ Sh. Virender Nehra (Practical)

Discipline: Plastic Engineering

Semester: 3rd

Subject: PPT-I

Lesson plan Duration: 15 WEEKS

Work Load (Lecture/Practical) per week: 3 PERIODS/ 4 PERIODS

Week	THEORY		PRACTICAL		
9Å					
	Lectur e	ΤΟΡΙΟ	Practic al	TOPIC	
1 ST	1	Unit–I: Extruder and its components.	1	To draw the layout of plastic processing laboratory.	
1	2	General principles of operation		processing laboratory.	
	3	function of various parts, barrel, screw, screen pack,			
	4	breaker plate, adaptor.	2	Setting up of the extruder for	
2^{ND}	5	die (attachment with extruder general geometry of die swell)		production of pipe (Including die fitting and centering).	
	6	Cooling system, Haul off system, printing			
	7	Nip rolls, bubble casing	3	To identify various defects of	
3 RD	8	winding equipment, cutting devices		pipes and suggest their	
5	9	stretching and orientation		remedies.	
	10	Revise Syllabus Viva-Voice	4	To study process of Blown film	
4 TH	11	Class Test-I		Plant.	
4	12	Unit –II: Extruder and importance of screw.			
	13	single screw and twin-screw extruder	5	To identify various defects of	
5 TH	14	vented barrel extruder		Blown films and suggest their	
	15	Screw and its construction, pitch, channel.		remedies.	
	16	Introduction to land width, helix angle	6	To study corrugated sheet	
6 TH	17	screw diameter, root diameter, channel depth, land		extrusion plant.	
	18	types of screws used in extrusion			
	19	two stage venting screw.	7	To study corrugated pipe	
7^{TH}	20	Introduction to screw cooling,		extrusion plant.	
	21	L/D ratio and its significance.			

8 TH	22	Revise Syllabus Viva-Voice	8	Study of construction and
	23	Unit – III: Extrusion processes.		working of wire and cable
	24	Blown film extrusion and pipes		coating plant.
	25	extrusion of sheets	9	To identify various defects of
	26	simple and corrugated		wire and cable samples and
	27	wires and cables, filaments uses		suggest their remedies.
9 th	28	Revise Syllabus Viva-Voice		
_	29	Class Test-II		
	30	Unit –IV: Advance Extrusion processes:		
	31	Introduction to co extrusion		
11 TH	32	Multi-layer blown films, uses and		
11	52	application		
	33	coextruded sheets.		
	34	coextruded pipes		
12 TH	35	Its application, uses and properties.		
	36	Revise Syllabus Viva-Voice		
	37	Unit –V: Calendaring process		
13 th	38	Introduction		
	39	Blending, scrap and cold trimming		
	40	Mills and strainers types of calendars		
14^{TH}	41	take-off stripper section, embosser		
	42	advantages of calendaring over extrusion		
	43	various calendaring defects and their		Viva voce and final evaluation
15 TH		remedies		
15	44	Revise Syllabus		
	45	Class Test-III		

Name of Faculty: Sh. Rahul Singh (Theory)

Discipline: Plastic Engineering

Semester: 3RD

Subject: PMP-I

Lesson plan Duration: 15 WEEKS

Work Load (Lecture) per week: 3 PERIODS

Week	THEORY		
M	Lect. Day	ΤΟΡΙΟ	
1^{ST}	1	Unit- I : Commodity Thermoplastics.	
	2	Preparation (brief description)	
	3	Its types and properties.	
	4	Applications of the Followings: -	
2^{ND}	5	Poly Ethylene's	
	6	LDPE, LLDPE its types, properties and application.	
	7	HDPE its types, properties and application.	
3 RD	8	UHMWHDPE its types, properties.	
	9	Poly Propylene (PP), Poly Vinyl Chloride (PVC)	
	10	Its types, properties and application.	
4^{TH}	11	Revise Syllabus	
	12	Viva- Voice	
	13	Unit- II: Engineering Thermoplastics:-	
5 TH	14	Poly Carbonate General Purpose, its application	
	15	Poly Styrene-General Purpose, its application	
	16	High impact Poly styrene.	
6 TH	17	Styrene Acrylonitrile, Polymethyl methacrylate.	
	18	Acrylonitrile-butadiene-styrene, Polyamides.	
	19	Cellulose plastics	
7^{TH}	20	Thermoplastic polyester (PET, PBT)	
	21	Revise Syllabus Viva- Voice	
	22	Unit- III: Thermosetting Plastics: Properties and applications of the following	
8^{TH}	23	Phenol formaldehyde	
	24	Urea formaldehyde	

	25	Melamine formaldehyde
9 TH	26	Poly urethanes
	27	Silicone resins, Epoxy resin, Unsaturated polyesters. Its types.
	28	Revise Syllabus
10 TH	29	Viva- Voice
	30	Class Test-II
	31	Unit- IV: Elastomers I
11 TH	32	Basic knowledge of preparation.
	33	And its types, properties and applications Natural rubber, Styrene butadiene rubber
	34	Chloroprene,
12 TH	35	Poly-isoprene,
	36	Revise Syllabus
	37	Viva- Voice
13 TH	38	Unit- V: Elastomers II
	39	Poly-butadiene
	40	Ethylene propylene
14 TH	41	diene monomer
	42	Nitrile butadiene rubber
	43	Silicone rubbers
15 TH	44	Revise Syllabus
	45	Viva- Voice

Name of Faculty: Pankaj Garg / Virender Nehra (Practical) Discipline: Plastic Engineering. Semester: 3rd Subject: Computer Aided Mould Design (CAMD) Lab Lesson plan Duration: 15 WEEKS Work Load (Practical) per week: 4 PERIODS

		PRACTICAL		
PRAC TICAL WEEK		ΤΟΡΙΟ		
1st	1	Introduction to AutoCAD: Starting up, practice on – how to create a new drawing file, setting drawing limits & saving a file		
2nd	2	Drawing lines in different ways using absolute co-ordinates, user coordinates, WCS, UCS, drawing circles, drawing arcs, drawing ellipses. Drawing polygons, drawings splines, Drawing polylines, using window, zoom commands		
3rd	3	Practice on Edit commands such as erase, copy, mirror, array, offset, rotate, oops, undo, redo, scale, stretch command		
4th	4	4 Practice on trim, break, extend, chamfer, fillet, O snap command; Draw orthographic views of simple objects		
5th	5	Practice on Text commands: editing text, text size, text styles, change properties commands		
6th	6	Practice on Layer Commands: creating layer, freeze, layer on/off, lock & unlock layer, move from one layer to other.		
7th	7	Viva of Syllabus covered		

8th	8	Practice on Dimensioning, linear dimensioning, angular dimensioning radius/diameter dimensioning, snap command, aligned dimensioning; applying tolerance; Editing of dimensioning
9th	9	Practice on print commands. Export commands Practice on plot commands. Import commands
10th	10	Practice on making complete drawings of Stepped pulley and V- belt pulley using AUTOCAD (2D)
11th	11	Practice on 3D drawing: drawing cube, sphere, cylinder, cone; 3D modeling: Transformation, translation, scaling, rotation etc. Isometric drawing
12th	12	Introduction and practice on 3D Modeling using AutoCAD software including various commands like Extrude, Revolve, Blend, Helix, Sweep, Holes, Ribs & Bosses etc. and practice these commands making 3D design of different plastics.
13th	13	Analysis and Report Generation for calculating stresses on various designs and structures.
14th	14	Design of various components used in plastic industries like pulley etc.
15th	15	Final viva and evaluation

Name of Faculty: Sh. Shiv Kumar (Theory)/(Practical)

Discipline: Plastic Engineering

Semester: 3rd

Subject: DDM-I

Lesson plan duration: 15 WEEKS

Work Load (Lecture/Practical) per week: 2 PERIODS/ 4 PERIODS

Week	THEORY			PRACTICAL		
*	Lecture DAY	TOPIC	Practical DAY	TOPIC		
		Unit-I: General Mould construction:	1	To draw basic mould		
1 st	1.	Basic terminology.		consisting of cavity and core plate.		
	2.	Mould cores., Mould cavities.				
2 ND	3.	Bolster and its types, Ancillary item.	2	To draw types of cavity and core inserts		
2	4.	Guide bush and Guide pillar.		(Rectangular, circular)		
aPD	5.	Sprue bush, Register ring, its types.	3	To draw guide pillar and guide bush		
3 RD	6.	Mould plate fastening, attachment of mould to platen.		(standard)		
4 TH	7.	Classification of moulds.	4	To draw rectangular and circular frame type		
4	8.	Integer mould, Insert mould.		ejector grid.		
	9.	Split and runner-less mould, two and three plate.	5	To draw various types of ejector elements.		
5 th	10.	Hot runner mould, introduction to materials. Brief introduction to materials.				
6 TH	11.	Material used for moulds and materials.	6	To draw and illustrate balanced runner		
	12.	Revise Syllabus and Viva Voice		layouts.		
7 TH	13.	Unit-II: Ejection System:	7	To draw Integer cavity plate cooling circuit (Z		

	14.	Ejector Grid, its assembly.		and balanced Z)
	15.	Ejection Techniques, sprue pullers.	8	To draw Integer core cooling circuits
8 TH	16.	Revise the Syllabus Viva-Voice		(angled hole baffled straight hole, stepped)
9 TH	17.	Unit-III: Feed System: Runner	9	Design of Multi impression two plate
9	18.	Sprue and its use, types of Runner		Injection Mould
1.0TH	19.	Balancing and size of runners.	10	Design of Three Plate Injection Mould
10 th	20.	Gates - Types of gates.		(multi-Impression)
11 TH	21.	Revise the Syllabus Viva-Voice	11	Design of Injection Mould for internal
11	22.	Unit-IV: Parting surface:		undercut components.
12 TH	23.	Introduction to Parting surface its type	12	To design and draw a runner less mould.
12***	24.	Selection of parting surface.		
10 TH	25.	Revise the syllabus. Viva-voice.		
13 TH	26.	Unit-V: Cooling system:		
	27.	Mould Plates its type.		
14 TH	28.	Cooling insert bolster assembly.		
1.5711	29.	Types of cooling insert bolster.		Viva voce and final evaluation
15 TH	30.	Revise the Syllabus Viva- Voice		

Name of Faculty: Sh. Sunil Kumar (Theory)/(Practical)

Discipline: Plastic Engineering

Semester: 3RD

Subject: BCE

Lesson plan Duration: 15 WEEKS

Work Load (Lecture/Practical) per week: 3 PERIODS/ 4 PERIODS

ek	THEORY			PRACTICAL		
Week						
	Lecture DAY	ТОРІС	Practical DAY	TOPIC		
1 ST	1	Basics of Fluid Flow:	1	To perform an experiment on		
1 st	2	Bernoulli's Rota-meter, Rate of discharge Equation and its application in fluid flow,		cyclone separator		
	3	venturi meter, Orifice Meter, pitot-tubes				
	4	velocity measurement.	2	To verify Bernoulli theorem.		
2^{ND}	5	Reynolds's number and their use	-			
-	6	friction losses during flow, pressure				
	7	concept of manometer – simple,	3	To determine the Reynolds		
3 RD		differential, Continuity equation	-	number and observe the pattern		
5	8	Revise Syllabus Viva-Voice	-	of laminar and turbulent flow.		
-	9	Heat Transfer: - Modes of heat transfer				
	10	Conduction across Single & Composite	4	To study the constructional		
	10	wall, Fourier law of conduction	-	features of reciprocating pump		
4 TH	11	Convection -Heat transfer by natural &				
		forced convection, LMTD	-			
	12	Individual and overall heat transfer				
		coefficients, Heat exchanger	-			
	13	Double pipe, Shell and Tube Heat	5	To determine the discharge		
5^{TH}	1.4	Exchanger.	-	coefficient (C _d) for a Pitot tube.		
	14	Revise Syllabus Viva-Voice	-			
	15					
∠тн	16	Thermodynamics	6	To study the constructional		
6 TH	17	total heat & specific heat	-	features of reciprocating pump.		
	18	Homogenous and heterogeneous system				
7^{TH}	19	thermodynamic equilibrium, Equation of State	7	To study the constructional features centrifugal pump.		

	20	Three Laws of Thermodynamics		
	21	Isometric, Isothermal process Isobaric &		
	21	Adiabatic process		
	22	Concept of Gibbs free energy	8	To perform an experiment on a
8^{TH}	23	Phase change		mixer for liquid-liquid mixing
	24	Revise Syllabus Viva-Voice		
	25	Mechanical Operations	9	To carry out the sieve analysis of a product obtained from size
9 th	26	Size Reduction law		reduction equipment such as
	27	Crusher and grinder.		ball mill, grinder etc.
	28	Its uses application.	10.	To determine overall heat
	29	Introduction to screening		transfer co-efficient in, a double
10 TH	30			pipe heat exchanger in Parallel and counter flow heat
		Screening Equipment		exchange modes
	31	Concept of Filtration.		
11 th	32	principle of Filtration		
	33	Introduction to Filter press		
TU	34	Cyclones Separators		
12 th	35	Revise Syllabus		_
	36	Viva-Voice		
_	37	Pumps and valves		
13 th	38	Construction and working of the pumps.		
	39	Reciprocating pump its principle		
	40	Centrifugal pump its principle		Viva voce and final evaluation
14^{TH}	41	gear and screw pump		
	42	Ball valve, gate valve piston and butterfly		
	43	solenoid valve		
15 th	44	Revise Syllabus Viva-Voice		
	45	Class Test-III		

Lesson Plan Plastic Engineering 5th Semester

Name of Faculty: Ajay Kumar (Theory)/ Virender Nehra (Practical)

Discipline: Plastic Engineering

Semester: 5th

Subject: PLASTIC PROCESSING TECHNIQUES-III

Lesson plan Duration: 15 WEEKS

Work Load (Lecture/Practical) per week: 4 PERIODS/ 4 PERIODS

Week	Working Day	Topic Covered	Practical DAY	TOPIC
	1	Basic principles of operations of	1	To study the specifications,
	2	injections		construction and working
1 ST	2	Moulding machinery/types of		principle of automatic
151	3	injection moulding machines,		injection molding machine.
	3	Piston type Injection molding Piston-piston type Injection		moraling machine.
	4	molding		
	5	Piston-Screw type Injection		
	5	molding		
	6	Reciprocating type Injection		
	Ŭ	molding		
2^{ND}	7	Description with detailed		
		construction.		
	8	Selection criteria for injection		
		moulding machine		
	9	Process variables	2	To study the specifications,
3 RD	10	Time, Temperature and		construction and working
3.00		Pressure		principle of CNC injection
	11	Mechanical control system		molding machine
	12	Electrical control system		
	13	Electronic control system		
4 TH	14	Parts and functions		
	15	General specification of		
		Injection Molding		
	16	Start-up procedure	-	
	17	Shutdown procedure	3	Practice of Die setting and
-TH	18	Cylinder nozzles		produce components on
5 TH	19	Interaction of moulding variable		automatic / CNC injection
	20	Time, Temperature and		molding
		Pressure		machine

6 TH	21	Optimization of cycle flow.		
Ũ	21	Optimization of cycle flow.		
	23	Defects in injection moulding	_	
	23	products, their causes and		
		remedies.		
	24	Defects in injection moulding	_	
	24	products, their causes and		
		remedies.		
7 TH	25	Defects in injection moulding	4	To determine mould
/	23	products, their causes and	-	shrinkage for the component
		remedies.		produced by Injection
	26	Loading of Mould on Injection	_	moulding.
	20	moulding machine		moulding.
	27	Unloading of Mould on	_	
	27	Injection moulding machine		
	28	Injection moulding inachine	_	
	20	thermosets.		
8 TH	29	Description with detailed	_	
0	29	construction.		
	30	Basic principles of blow	_	
	30	moulding		
	31	Types of blow moulding	_	
	32	Extrusion blow moulding	_	
9 TH	33	Injection blow moulding	5	Practice of Die setting and
	33	Blow moulding of irregular		production of component on
	54	shapes		hand operated blow molding
	35	Production of parison by	_	machine, using at least 3
	55	extrusion		moulds.
	36	Production of parison by	_	mourus.
	50	injection		
10 TH	37	Parison wall thickness control	_	
10		Parison blowing systems	_	
	38 39	Effect of process variables on	_	
	39	product design and properties.		
	40	Parison programming	_	
11 TH	40	Mould venting		Viva voce evaluation
11	41	Defects in blow moulding	_	viva voce evaluation
	42	products, their causes and		
		remedies.		
	43	Defects in blow moulding	_	
	J.	products, their causes and		
		remedies.		
	44	Defects in blow moulding	-	
		products, their causes and		
		remedies		
		remeules		

12 TH	45	Defects in blow moulding products, their causes and remedies.	6.	Practice of Die setting Production of components on automatic blow machine
	46	Trouble shooting		by setting
	47	Basic principle of rotational molding		the process parameters.
	48	Material selection		
13 TH	49	Estimation through trial analysis		
	50	Type of machine		
	51	Process variables		
	52	Charge size, wall thickness		
		control		
14 TH	53	Heating and Cooling system	7.	To produce small
	54	Process requirement for the moulding of water tank		components on vertical hydraulic injection
	55	Process requirement for the moulding of dust bin		moulding machine
	56	Application of Rotational Moulding.		
15 TH	57	Ejection and Finishing		Viva voce and final evaluation
	58	Fault - Causes and Remedies		
	59	Fault - Causes and Remedies		
	60	Merits and Demerits of		
		Rotational Moulding Process.		

Name of Faculty: Sh. Shiv Kumar (Theory)/(Practical)

Discipline: Plastic Engineering

Semester: 5th

Subject: DDM-I

Lesson plan Duration: 15 WEEKS

Work Load (Lecture/Practical) per week: 3 PERIODS/ 3 PERIODS

k		THEORY	PRACTICAL		
Week					
	Lecture DAY	TOPIC	Practical DAY	TOPIC	
1 ST	1	Unit 1: Introduction Introduction to Mould design	1	Procedure for Designing an	
1	2	Concept considerations		Injection Mold: Primary	
	3	Materials and characteristics used for dies and moulds		positioning of inserts,	
	4	Impressions Core and cavity		the ejector system, the ejector	
	5	Types of cavity and core,		grid, complete the top half of	
2 ND	6	Their advantages disadvantages, bolster plates and its types.		drawing, complete the plan view, complete the cross-section, complete the drawing	
	7	Guide pillar	2	To design and draw various	
3 RD	8	Guide bush		mould parts	
5	9	Register ring and their types, Mould clamping			
	10	Direct, indirect	3	To design and draw a single	
4 TH	11	Class test –I		impression two plate injection	
4	12	Parting surface, Types of parting surface		mould by taking suitable at least four component	
	13	Selection of parting surface	4	To design and draw a multiple	
5 TH	14	Relief of parting surfaces		impression two plate injection	
5	15	Venting, Feed system		mould by taking suitable at least two component	
	16	Runners	5	To design and draw a multiple	
6 TH	17	Sprue		impression three plate injection	
0	18	Runners and its types, Balancing of runners		mould by taking suitable at least two component	
7^{TH}	19	Size of runners	6		
/	20	Gates			

	21	Types of gates, Size of gates		To design and draw a multiple impression split mould by taking suitable at least two component
	22	Ejection system	7	To design and draw a multiple
8 TH	23	Ejector grid		impression runnerless mould by
0	24	Ejector plate assembly, Ejection techniques		taking suitable component
	25	Ejection from fixed half		
9 TH	26	Sprue pullers		
9	27	Cooling system Cooling integer, type mould plates and its types		
	28	Cooling insert bolster assembly and its types		
10 TH	29	Cooling other mold parts,		
	30	Water connection and its types, Class Test – II		
	31	Introduction to Splits		
11 TH	32	Sliding splits and types		
11	33	Angled lift splits and types, Side cores and side Cavities		
	34	Introduction		
12 TH	35	Types of side core and side cavities		
12	36	Molding Internal Undercuts		
	37	Introduction, Form pin		
13 TH	38	Split core		
15	39	Side core, Stripping internal undercut.		
	40	Mould for threaded component		
	41	Introduction		
14 th	42	Moulds for internally threaded components and its types, Moulds for externally threaded components and its types		
	43	Types of Mold : Two plate mould		Viva voce and final evaluation
1.5711	44	Three plate mould		
15 TH	45	Hot runner mould, Class Test-III		

Name of Faculty: Sh. Arun Syan (Theory)/ Sh. Ajay Kumar (Practical)

Discipline: Plastic Engineering

Semester: 5th

Subject: PRWM

Lesson plan Duration: 15 WEEKS

Work Load (Lecture/Practical) per week: 3 PERIODS/ 2 PERIODS

Week		THEORY	PRACTICAL	
M				
	Lecture DAY	TOPIC	Practical DAY	TOPIC
1 ST	1	Unit-I : Pollution and Hazards related to Plastics Pollution caused by plastics	1	To conduct recyclability test
151	2	loading of toxic chemicals from plastics into soil		
	3	loading of toxic chemicals from plastics into water		
	4	including additives, flame retardants,	2	Collection of different plastic
2 ND	5	Landfill, incineration of Plastics		wastes and their segregation in various groups
	6	ISI Standards regarding limits of these chemicals in effluents.		
	7	Collection of plastic waste	3	Conversion of collected samples
3 RD	8	Unit-II: Plastic waste and its Separation		into plastic granules
	9	Collection of plastic waste		
	10	Sources of plastic wastes,	4	Property modification of plastic
4 TH	11	Class Test - I		granules by adding natural material like cellulose
	12	Sorting methods such as Identification marks,		
	13	Segregation methods such as Identification marks,	5	Determination of BOD and COD of given samples of effluents of
5 TH	14	Density separation,		plastic industry
	15	Solvent separation		
	16	Floatation techniques	6	Mixing of virgin polymers with
6 TH	17	Equipment based sorting techniques.		recycled polymers (both by melt
0	18	Thermocouples		method and solvent method)
7^{TH}	19	Sources of plastic wastes,	7	

	20	Collection of plastic waste	Тс	o carry out plastic waste
-		Class Test-II		anagement of at least one
	21			partment/section of the
				lytechnic
	22	Unit-III: Polymer degradation and their		
		life expectancy		
8 TH	23	Natural and synthetic polymer and their		
0	23	compatibility with surroundings		
	24	starch and proteins, silicones and other		
	27	man made fabrics.		
		Life expectancy of different plastics in		
	25	environment and thermal degradation,		
9 TH		biodegradation and photo degradation		
,	26	Agents for increasing life expectancy of		
	20	polymers		
	27	Unit-IV: Plastic Waste Management:		
	28	Public awareness regarding hazards caused		
_	20	by indiscriminate use of plastics		
10 TH	29	Proper disposal of plastics, Need and		
10	2)	importance of plastic reprocessing.		
	30	Unit-V: Plastic Waste Management		
		Techniques		
_	31	Stages in plastic recycling,		
		Energy recovery from plastic waste, Co-		
11^{TH}	32	processing in cement Kiln, Plastic waste in		
_		road construction.		
	33	Advantages and disadvantages of recycling		
	34	Unit-VI: Machinery and Value addition:		
	35	Process flow chart by mechanical route -		
12 th	55	Basic Mechanical recycling		
	36	Plant-Additives for improving quality of		
		recycled products		
	37	value addition in Plastics recycling viz.,		
	38	PP/HDPE woven sacks to Pots, PE/PE		
13 th	20	multilayer film waste to moulded products.		
	39	Mulching, canal lining,		
	••	rainwater harvesting,		
	40	waste water recovery by membrane		
		separation		
14 TH	41	Revision of topic		
	42	Again, revised important topic of exam		
		point of view		
1	43	Viva voice	V1	va voce and final evaluation
15 th	44	Practice for the all syllabus		
	45	Class Test-III		

Name of Faculty: Sh. Pankaj Garg (Theory)/ Sh. Rahul Singh (Practical)

Discipline: Plastic Engineering

Semester: 5th

Subject: Compounding and Formulation of Plastics (CAFP)

Lesson plan Duration: 15 WEEKS

Work Load (Lecture/Practical) per week: 4 PERIODS/ 2 PERIODS

~		THEORY		PRACTICAL
Week				
	Lecture DAY	TOPIC	Practical DAY	TOPIC
1 ST	1	Unit 1: Introduction Introduction to CAFP	1	Extraction of inorganic additives from PVC i.e. fillers, pigments
	2	Principles of compounding		etc. by dissolving
	3	for modifying and enhancing processing		
	4	Application properties		
	5	Service life of plastics		PVC compound in solvents such
	6	Class test –I		as THF, EDC and
2^{ND}	7	Unit –II : Definition of additives		Cyclohexanone and removing
	8	Classification of additives		PVC and soluble organic materials
	9	Description of following additives and their functions	2	Making a PVC compound having following ingredients
3 RD	10	Properties Modifiers		(100 parts)
	11	Plasticisers		Stabilizer (2 – 3 parts), Lubricant
	12	Fillers		(0.5 - 1.0 parts);
	13	Impact modifiers		plasticizers (20 – 50 parts); Pigment (0.5 – 1 part) and Filler
	14	Extenders		
4^{TH}	15	Processing aids		(10-40 parts) on a two roll mill
	16	Heat stabilizers		and compression moulding of a sheet
	17	Lubricants	3	Cutting dunbell shaped test
5 TH	18	Solvents and diluents	_	pieces for tensile strength from
5	19	Surface property modifiers		compression moulded sheet as
	20	Antistatic agents		prepared in (2) and
	21	Antislip agent		finding tensile strength and
6 TH	22	Antiblock/slip additives		elongation with or without
0	23	Colourants		plasticizer. Calculation of percent
	24	Pigments and dyes		increase in elongation

	25	Antiageing additives	4	Analysis of the effects of fillers
	26	Antioxidants		on mechanical properties of PVC
7^{TH}	27	Anti-ozonants		compound
	28	UV stablisers		
	29	Fungicides	5	Compounding of polyethylene
8 TH	30	Antitermites		with various additives, fillers,
8111	31	Bactericide additives		stabilizers, blowing agent and
	32	Miscellaneous additives:		rubber
	33	Blowing agent	6	Mechanical property
	34	Flame retardants		measurement of compounded
9 th	35	Mould Release agents		polyethylene and evaluation of
	36	Defoamers		the effect of compounding variables.
	37	Smoke Suppressants		
	38	Class Test – II		
10 TH	39	Formulation of various ingredients in the compounding		
	40	Role of various ingredients in the compounding for both		
	41	Thermoplastics materials		
11 TH	42	Thermoset materials		
11	43	Unit-III : Compounding equipments :		
	44	Ribbon blender		
	45	High speed mixer		
	46	Banbury mixer		
12 TH	47	Two roll mill		
	48	Mixer extruder (construction and working of these equipments)		
	49	Ultra turax mixers		
13 TH	50	High sheer mixers		
13	51	Intensive dry mixer		
	52	Compounders		
	53	Twin screw extruders		
	54	Construction of Kneaders		
14 TH	55	Working of Kneaders		
	56	Dispersors		
	57	Unit – IV : Compounding of PVC for rigid		Viva voce and final evaluation
1.571	58	Semi-rigid		
15 th -	59	Flexible applications.		
	60	Class Test-III		

Name of Faculty: Sh. Sunil Kumar (Theory)/ (Practical)

Discipline: Plastic Engineering

Semester: 5th

Subject: Plastic Testing-II

Lesson plan Duration: 15 WEEKS

Work Load (Lecture/Practical) per week: 3 PERIODS/ 3 PERIODS

Working Day	Topic Covered	Pract ical DAY	ΤΟΡΙϹ
1.	Introduction to Electrical Properties	1	To carry out volume and surface
	Dielectric strength		resistivity test on given samples of
	Dielectric constant		plastic
2.	Insulation resistance		
	Volume and Surface resistivity		
	Arc resistance		
3.	Antistatic tests	2	To measure gloss of plastic specimen
	Introduction to Optical Properties		
	Refractive index		
4.	Luminous transmittance		
	Clarity		
	Haze		
5.	. Colour measurements 3	3	To determine refractive index of 2
	Gloss.		given monomers to establish its
	Introduction to chemical Properties		purity
6.	Immersion test		
	Acetic acid immersion test		
	Acetone immersion test		
7.	Stain Resistance of Plastics	4	To determine Arc resistance of
	Stress Cracking Resistance		plastic sample
	Introduction to Flammability		
8.	Flammability Test		
	Ignition Properties		
	Oxygen Index Test		
9.	Flammability of Cellular Plastics	5	To determine Oxygen index .
	Smoke Density Test		
	UL94 Flammability Test.		
10.	Horizontal Burning Test		

	Vertical Burning Test		
	Introduction to Weathering Properties		
11.	Environmental factors affecting		
	plastics		
	Accelerated weathering tests	6	To carryout smoke density test.
	Outdoor weathering of plastics		
12.	Resistance of plastics to biological		
	systems.		
	Test methods for bio-degradable		
	plastics		
	Test standards for bio-degradable		
	plastics		
13.	Criteria used in evaluation of		
	biodegradable plastics		
	Description of current test methods	7	To determine ESCR of given plastic
	Introduction to Product Testing		sample.
14.	Plastics Pipes (PVC & HDPE)		
	Films		
	Woven sacks		
15.	Water Tanks		
	Containers		
	Plastic Foams	Final V	Viva Voice