Name of Faculty: Sh. Sunil Kumar (Theory)/ Sh. Sunil Kumar (Practical)

Discipline: Plastic Technology

Semester: IIIrd

Subject: Engineering Fundamental

Lesson plan Duration: 15 WEEKS

Work Load (Lecture/Practical) per week: 4 PERIODS/ 4 PERIODS

×		THEORY		PRACTICAL
Wee]				
	Lecture	TOPIC	Practical	TOPIC
	DAY		DAY	
. ST	1	Unit 1: Engineering Fundamental : i) Application and Advantages of Electricity	1	Use of Megger: Objective: To make the students
151	2	Difference between AC and DC		familiar with different uses of
	3	Various applications of electricity		megger.
	4	Advantages of electrical energy over other types of energy		
	5	ii) Basic Quantities of Electricity :	2	Connection of a three phase motor
	6	Definition of voltage, current,		and starter including fuses and
	7	Power and energy with their units		reversing of direction of rotation.
2^{ND}		Name of the instruments used: Voltmeter,		Objective: Students may be made
	8			familiar with the equipment needed
				to control a three-phase motor
	9	Ammeter, energy meter		The students must experience that
2RD	10	iii) Distribution System :		by changing any two phases, the
3	11	iv) Supply from Poles to Distribution Board		direction of rotation is reversed.
	12	v) Electric Motors:		
	13	Definition, types and various applications of single phase and three phase motors	3	Trouble shooting in a three-phase motor
	1.4	Connection and starting of three phase motors		Loose connections
	14	by star delta starter		Blown fuse
4TH	15	vi) Measuring Instruments		Tripped overload
4		Basics of measurement		protection
	16			Incorrect direction of rotation
	10			Single phasing
				Burnt winding to be simulated by a

				loose connection behind a terminal
				box
	17	Principles of measurement of DC voltage and		Objective: The students must be
	17	DC current		able to detect the most common
	10	AC voltage and AC current and resistance		faults which may occur in a three-
5^{TH}	18	using a multimeter block diagram of a CRO		radits, which may occur in a direc
	10	use for the measurement of voltage (DC and		phase motor, using meggar
	19	AC), frequency and to study waves shape		wherever necessary.
	20	Test-I		
	21	UNIT-II Electronics Engineering :	4	Treatment of electric shock
	21	i) Introduction :		Teacher may give a demonstration
	22	Introduction to active and passive		how an electric shock must be
6 TH		components		treated.
	23	Introduction to intrinsic and extrinsic		Students must be trained to treat the
		semiconductor		persons suffering from an electric
	24	PN junction diode		SHOCK
	25	Mechanism of current flow in PN junction	5	Measurement of resistors by an
TH	26	Diode (PN junction) as rectifier		ordinary multimeter and their
/	27	Half wave rectifier,		verification on the basis of colour
	28	Full wave rectifier and filter circuits		code.
8 TH	20	Brief idea and typical application of power	6	Unit-II
	29	diode, zener diode, photo diode		Plotting of formal V-1
	30	Concept of bipolar transistor - PNP ad NPN,		characteristics of PN junction diode
	31	Their characteristics and uses		
	32	ii) Digital Electronics :		
	33	Basic difference between analog and digital	7	Rectifier circuits using
		signal		semiconductor diode, measurement
	34	Binary and hexadecimal number system		of input and output voltage and
o TH	35	Binary addition, subtraction,		of input and output voltage and
,		Multiplication and division.		plotting of input and output wave
	36			shape for (i) half wave rectifier (ii)
	50			
				full wave rectifier
	37	Definition,	8	Verification and interpretation of
	38	Symbols and truth table of NOT, AND, OR,		truth tables for AND OR NOT
10 TH	50	NAND, NOR, EX-OR Gates, Boolean algebra		
10	39	Demorgan's theorem General principle of A/D		NAND, NOR and EX-OR gates
	0,2	and D/A conversion techniques		
	40	Brief idea of their applications		
	41	iii) Programmable Logic Controller :	9	Working of a PLC on PLC Trainer
	41			
	10	Basic concept of PLC, its block diagram and		
11 ^{1H}	42	applications		
	43	Test-II		
	44	UNIT-III Civil Engineering :		
12 TH	<u>45</u>	i) Construction Materials	10	Unit-III · The students should be
14	-J-J-		10	ont-m. The students should be

	46	Basics of various construction materials such as stones, bricks, lime		taken to different construction sites
	47	Cement and timber along with their properties		to show them various construction
		Combine and annoor along with their properties		materials, concreting process and
				construction of RCC structural
	48			elements, foundations and other
				civil works
		Physical/ field testing and uses		
	49	Elements of brick masonry	11	Note: While imparting instructions,
	50	ii) Foundations		teachers are expected to lay more
13 TH	51	Types of various foundations		icucions are expected to my more
_	52	their salient features		emphasis on concepts and
				principles.
	53	Suitability of various foundations for heavy	12	It will be better if the classes for
		light		general engineering are conducted
	54	Vibrating machines.		in the laboratories and arranized
14^{TH}		iii) Factors to be considered for		in the laboratories and organized
	22	installation/erection		demonstrations for explaining
	56	Commissioning of plastic processing		various concepts and principles
	50	machinery		various concepts and principies
	57	Vibrations- their effects		Viva voce and final evaluation
	58	Methods to control vibrations		
15 TH	59	General method of alignment/leveling		
	60	Test-III		

Name of Faculty: Sh. Arun Syan (Theory)/ Sh. Arun Syan (Practical)

Discipline: Plastic Technology

Semester: Illrd

Subject: SOM

Lesson plan Duration: 15 WEEKS

Work Load (Lecture/Practical) per week: 4 PERIODS/ 4 PERIODS

ek	THEORY		PRACTICAL	
We				
	Lecture DAY	TOPIC	Practical DAY	TOPIC
	1	Unit 1: SOM : Introduction to SOM	1	Tensile test on bars of Mild steel and Aluminium
1^{ST}	2	Stresses and Strains : Concept of load, stresses and strain		
	3	Tensile compressive and shear stresses and strains		
	4	Concept of Elasticity, Elastic limit and limit of proportionality		
2 ND	5	Hook's Law, Young Modulus of elasticity	2	Bending tests on a steel bar or a
	6	Nominal stress, Stress strain diagram		wooden beam
	7	Yield point, plastic stage		
	8	Ultimate strength and breaking stress		
	9	Percentage elongation, Proof stress and	3	Impact test on metals
		working stress		
	10	Factor of safety, Poisson's ratio, Shear modulus		Izod test
3 RD	11	Longitudinal and circumferential stresses in seamless thin walled cylindrical shells (derivation of these formulae not required)		Charpy test
	12	Unit-II: Resilience : Resilience, proof resilience and modulus of resilience		
	13	Strain energy due to direct stresses	4	Torsion test on specimens of
4^{TH}	14	Stresses due to gradual, sudden and falling load		different metals for determining
	15	Numerical problems		modulus of rigidity
	16	Class Test-I		
5 TH	17	Unit-III : Moment of Inertia	5	To determine the stiffness of a
5	18	Concept of moment of Inertia and second		helical spring and to plot a graph

		moment of area		between load and extension.
	19	Radius of gyration, section modulus		
	17	Theorem of perpendicular axis and		
	20	parallel axis (without derivation)		
		Second moment of area of common.	6	Hardness test on different
		geometrical sections: Rectangle, Triangle,	-	metals.
	21	Circle (without derivation) Second moment		
		of area for I.T. L. Z section		
6 TH		Unit-IV : Bending Moment and Shearing		
	22	Force		
	23	Concept of beam and type of loading		
	24	Concept of end supports-Roller, hinged and		
	24	fixed		
	25	Concept of bending moment and shearing		
	23	force		
		B.M. and S.F. Diagram for cantilever and		
TH	26	simply supported beams with and without		
/	20	overhang subjected to concentrated and		
		U.D.L		
	27	Simple numerical problems		
	28	Test-II		
	29	Unit-V : Bending stresses		
8^{TH}	30	Concept of Bending stresses		
	31	Theory of simple bending		
	32	Use of the equation $f/y = M/I = E/R$		
	33	Concept of moment of resistance		
	34	Bending stress diagram		
		Calculation of maximum bending stress in		
9 TH	35	beams of rectangular, circular, and T		
-		section		
	2.5	Permissible bending stress Section		
	36	modulus for rectangular, circular and		
	27	symmetrical I section		
	37	Simple numerical problems		
	38	Unit-VI : Columns : Concept of column,		
10^{TH}	20			
	39	Types of columns		
	40	Buckling load, crushing load, Slenderness		
		Taulo		
	41	ractors effecting strength of a column		
	42	End materiate Effective law of		
лти	42	Strength of column by Fuler Formula		
11'''	43	Suchgui of column by Euler Politicia		
	10	without derivation		
		Rankine Gourdan formula (without		
	44	derivation)		

12 TH	45	Simple numerical problems	
	46	Unit-VII : Torsion	
	47	Concept of torsion- difference between torque and torsion	
	48	Use of torque equation for circular shaft	
	49	Comparison between solid and hollow shaft with regard to their strength and weight.	
13 th	50	Power transmitted by shaft, Concept of mean and maximum torque	
	51	Simple numerical problems	
	52	Unit-VIII: Springs : Closed coil helical springs subjected to axial load	
	53	Impact load	
1 4 TH	54	Stress deformation	
14	55	Stiffness and angle of twist and strain energy	
	56	Proof resilience	
	57	Laminated spring (semi elliptical type only)	 Viva voce and final evaluation
	58	Determination of number of plates	
15 th	59	Simple numerical problems	
	60	Class Test-III	

Name of Faculty: Sh. Ajay Kumar (Theory)/ Sh. Ajay Kumar (Practical)

Discipline: Plastic Technology

Semester: Illrd

Subject: VFF

Lesson plan Duration: 15 WEEKS

Work Load (Lecture/Practical) per week: 3 PERIODS/ 4 PERIODS

Veek		THEORY		PRACTICAL
	Lecture DAY	TOPIC	Practical DAY	TOPIC
1^{ST}	1	Unit 1: Introduction Introduction to VFF	1	To verify Bernoulli theorem
	2 3	Basic Terminology of Fluid Specific Mass, Specific Volume ,		
2 ND	4	Specific Weight, Specific Gravity	2	To determine the Reynolds number and observe the pattern of laminar
2	5 6	Pressure, Viscosity, Surface Tension Capillarity ,Compressibility , Vapor pressure	-	and turbulent flow
	7	Unit-II : Viscous Flow	3	To determine the discharge
3 rd	8	Classification of Fluid, Ideal Fluid, Real Fluid, Newtonian Fluid, Non-Newtonian Fluid		coefficient (Cd) for an venturimeter
	9	Pseudo-plastic, Viscosity(Dynamic & Kinematics),Newton's Law of Viscosity		
	10	Effect of Viscosity on Temperature	4	To determine the discharge
4 TH	11	Effect of Viscosity on Motion, Classification of Viscous Flow		coefficient (Cd) for an orificemeter
	12	Laminar Flow, Turbulent Flow		
	13	Steady and Unsteady Flow,	5	To study the constructional features
5^{TH}	14	Uniform & Non Uniform Flow		of reciprocating
	15	Class Test - I		
	16	Unit-III : Discharge	6	To study the constructional features
6 TH	17	Rate of discharge , velocity measurement, continuity equation		of centrifugal pump.
	18	Types of flow line, Path line, Stream line, Streak line, Potential line		
	19	Flow net, Types of flow in a pipe,	7	To calibrate Bourdon gauge on
7^{TH}	20	uniform flow, Compressible Flow, Incompressible Flow		pressure calibration test rig

	21	turbulent Flow, Rotational Flow, Irrotational Flow,		
8 TH	22	One dimensional Flow,	8	To determine Darcy's coefficient of
	23	Two dimensional Flow,		friction for flow through pipes
	24	Three dimensional Flow		
OTH	25	Unit-IV : Bernoulli's Equation and its application in fluid flow	9	To determine Chezy's coefficient of friction for flow through pipes.
9	26	Venturi Meter, Orifice Meter, Pitot Tubes		
	27	Rota-meter, nozzle, Euler's equations		
	28	Hagen-Poiseullie's equation	10	To verify the loss of head due to
10^{TH}	29	Reynold's and Froude's number and their use		sudden expansion
	30	Class Test-II		
	31	Unit-V: Flow through pipes	11	To verify the loss of head due to
11 TH	32	Discharge through a compound pipe(series and parallel arrangement)		sudden contraction
	33	Flow through sudden enlargement, Flow through sudden contraction, Flow through obstruction in a pipe		
	34	Loss of head in pipes (Darcy's and Chezy's formula), Loss of head due to friction in a viscous flow		
12 TH	35	Unit-VI : Pressure Measurement : Concept of Gauge Pressure		
	36	Absolute Pressure, Atmospheric Pressure, Measurement of Fluid Pressure		
	37	Piezometer Tube, Manometer, Simple Manometer, Micro manometer		
13 th	38	Differential Manometer, Mechanical Gauge, Bourdon's Gauge,		
	39	Diaphragm Pressure Gauge, Dead Weight Pressure Gauge		
	40	Unit-VII : Pumps and Valves		
14^{TH}	41	Construction and working of the Reciprocating Pump		
	42	Centrifugal Pump, Relief valve		
15 TH	43	Pressure Reducing Valve, Pressure control Valve		Viva voce and final evaluation
15	44	Servo Valve and Brake Valve		
	45	Class Test-III		

Name of Faculty: Sh. Pankaj Garg (Theory)

Discipline: Plastic Technology

Semester: Illrd

Subject: PST-I

Lesson plan Duration: 15 WEEKS

Work Load (Lecture/Practical) per week: 3 PERIODS

k		THEORY			
Vee]					
>					
	Lecture	TOPIC			
	DAY				
1^{ST}	1	Unit 1: Introduction Introduction to PST-I			
	2	Introduction to Polymers:			
	3	Classification of polymer Natural, Semisynthetic, Synthetic,			
	4	Linear, Branched, Cross linked polymers			
2^{ND}	5	Thermoplastic, Thermoset, Commodity,			
	6	Engineering, Speciality			
	7	Condensation, Addition, Polymer blends			
3^{RD}	8	Alloys, Plastics,			
	9	Elastomers, Fibers			
-	10	Unit II : Brief History of Polymers			
4^{TH}	11	Scope			
	12	Study and Applications of Conventional polymers			
	13	Comparison with Conventional Materials (Metals, Wood etc.).			
5 TH	14	Study of Polymers in new emerging areas like food packaging			
	15	Membrane separations,			
	16	Conducting polymers			
6^{TH}	17	Biomedical applications			
	18	Class Test-I			
	19	Unit-III : Petrochemicals:			
7^{TH}	20	Introduction			
	21	Raw materials,			
	22	Petroleum refining			
8^{TH}	23	Petrochemical process technology with reference to sources for general monomers			
	24	Vinyl			
	25	Chloride,			
9^{TH}	26	Ethylene,			
	27	Propylene			
10 TH	28	Acrylonitrile			

	29	Styrene
	30	Methyl Methacrylate
	31	Phenol,
11^{TH}	32	Polyols,
	33	Isocyanates
	34	Class Test- II
12 TH	35	Unit-IV: Introduction to Polymer Reaction Mechanism
	36	Reaction mechanism of addition
	37	Condensation polymerization
13 TH	38	Thermodynamic
	39	Kinetic requirements of a reaction
	40	Copolymerization
14^{TH}	41	Ionic Polymerization
	42	Unit V: Macromolecular concept
	43	Secondary bonding in polymers
15 TH	44	Stereo isomerism in polymers
	45	Class Test-III

Name of Faculty: Sh. Shiv Kumar (Theory)

Discipline: Plastic Technology

Semester: Illrd

Subject: PMP

Lesson plan Duration: 15 WEEKS

Work Load (Lecture/Practical) per week: 3 PERIODS

¥		THEORY
Veel		
A		
	Lecture	TOPIC
	DAY	
1^{ST}	1	Unit 1: Introduction Introduction to PMP-I
	2	General characteristics of thermoplastics
	3	Thermosets
	4	Elastomers
2^{ND}	5	Crystalline
	6	Amorphous polymers
	7	Their relation to processing
3 RD	8	Applications
	9	Unit II : Thermoplastics :
	10	General preparation, properties and applications of the following
4^{TH}	11	PE - Linear low density polyethylene (LLDPE),
	12	Low density Polyethylene (LDPE)
	13	High density polyethylene (HDPE)
5^{TH}	14	UHMWHDPE
	15	PVC and major vinyl chloride co-polymers
	16	PP,PC,
6 TH	17	PS-GPPS, HIPS
	18	Nylons - Nylons 6, 66
	19	PMMA
7^{TH}	20	ABS, SAN
	21	Cellulose plastics
	22	PET, PBT.
8^{TH}	23	Thermoplastic polyurethane (TPU)
	24	Class Test-I
	25	Unit – III : Thermosetting resins
9 TH	26	Synthesis
	27	Properties
10 TH	28	Applications of phenol resins (urea, melamine),

	29	Poly urethanes
	30	Silicone resins
	31	Epoxy resin
11^{TH}	32	Unsaturated polyesters
	33	Class Test - II
	34	Unit-IV : Elastomers
12 TH	35	General preparation
	36	Properties and Applications of Natural Rubber (NR)
	37	Styrene Butadiene Rubber (SBR)
13 TH	38	Polyisoprene
	39	Chloroprene
	40	Polybutadiene
14^{TH}	41	Ethylene Propylene Diene Monomer (EPDM)
	42	Nitrile rubber
	43	Silicone rubber
15^{TH}	44	Elastomers
	45	Class Test-III

Name of Faculty: Sh. Ajay Kumar (Practical)

Discipline: Plastic Technology

Semester: Illrd

Subject: CAD

Lesson plan Duration: 15 WEEKS

Work Load (Lecture/Practical) per week: 6 PERIODS

×	PRACTICAL	
Veel		
A		
1 ST	Lecture	TOPIC
	DAY	
	1	Unit 1: Introduction Introduction to CAD
	2	Introduction to AutoCAD :
	3	Starting up, practice on – how to create a new drawing file
2 ND	4	Setting drawing limits & saving a file
	5	Drawing lines in different ways using absolute co-ordinates
	6	User co-ordinates, WCS, UCS, drawing circles, drawing arcs, drawing ellipses
3 RD	7	Drawing polygons, drawings splines. Drawing polylines, using window, zoom
		commands.
	8	Unit – II : Practice on Edit commands such as erase copy, mirror, array
	9	Offset, rotate, oops, undo, redo, scale, stretch, trim
4 TH	10	Break, extend, chamfer, fillet, O snap command
	11	Unit-III : Practice on Text commands
	12	Editing text, text size, text styles, change properties commands.
	13	Unit-IV : Practice on Layer Commands:
5^{TH}	14	Creating layer
	15	Freeze
6 TH	16	Layer on/off colour assigning
	17	Current layer, load line type, lock & unlock layer
	18	Move from one layer to other
7 TH	19	Unit- V : Practice on Hatching
	20	Hatch pattern selection
	21	Unit- VI : Practice on Dimensioning
8 TH	22	Dimensioning
	23	Angular dimensioning radius/.diameter dimensioning O-snap command
	24	Aligned dimensioning
9 TH	25	Editing of dimensioning
	26	Tolerances in dimensioning

	27	Unit-VII : Practice on print/plot commands
10 TH	28	Export/import commands
	29	Unit-VIII : Practice on making complete drawings of components by doing
		following exercises
	30	Detail and assembly drawing of the following using AUTOCAD (2D)
11 TH	31	Plummer Block, Wall Bracket, Stepped pulley, V-belt pulley
	32	Flanged coupling, Machine tool Holder (Three views), Screw jack or knuckle
		joint
	33	Isometric Drawing by CAD using Auto CAD (one sheet)
	34	Drawings of following on computer
12 TH	35	Cone, Cylinder, Isometric view of objects
	36	Unit-IX : Modelling (02 sheets)
13 TH	37	3D modelling, Transformations, scaling, rotation, translation
	38	Unit-X : Creating Chamfer and Fillet
	39	Practice on surface modeling, create part file
14 TH	40	practice on assembly of parts, creating assembly view
	41	Orthographic views, section view (Practice on different views, practice on data
	42	
	42	
15 TH	43	Introduction to Other Softwares
	44	Pro Engineer/ CATIA/ Inventor/ Unigraphics/ Solid Work: Salient
		features
	45	Viva voce and final evaluation